Journal of Biomolecular NMR

, Volume 30, Issue 4, pp 407–422

Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme

  • T. A. Soares
  • X. Daura
  • C. Oostenbrink
  • L. J. Smith
  • W. F. van Gunsteren
Article

Abstract

The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom–atom distance bounds, 3JNH α and 3Jαβ coupling constants, and 15N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom–atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0–1.5 ns while backbone 3JHNα-coupling constants and 1H– 15N order parameters take slightly longer, 1.0–2.0 ns. As expected, side-chain 3Jαβ-coupling constants and 1H– 15N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result.

Keywords

generalized order parameters GROMOS force field hen egg white lysozyme NOE inter-proton distances spin–spin coupling constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antes, I., Thiel, W., Gunsteren, W.F. 2002Eur. Biophys. J.31504520Google Scholar
  2. Bakowies, D., Gunsteren, W.F. 2002J. Mol. Biol.315713736Google Scholar
  3. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R. 1984J. Chem. Phys.8136843690Google Scholar
  4. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. and Hermans, J. (1981) In Intermolecular Forces, Pullman, B. (Ed.), Reidel, Dordrecht, pp. 331–342. Google Scholar
  5. Bonvin, A.M., Sunnerhagen, M., Otting, G., Gunsteren, W.F. 1998J. Mol. Biol.282859873Google Scholar
  6. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M. 1983J. Comput. Chem.4187217Google Scholar
  7. Buck, M., Boyd, D.B., Redfield, C., MacKenzie, D.A., Jeenes, D.J., Archer, D.B., Dobson, C.M. 1995Biochemistry3440414055Google Scholar
  8. Carter, D., He, J., Ruble, J.R. and Wright, B. (1997) Protein Data Bank, entry 1AKI.Google Scholar
  9. Chandrasekhar, I., Gunsteren, W.F. 2001Curr. Sci.8113251327Google Scholar
  10. Chandrasekhar, I., Gunsteren, W.F. 2002Eur. Biophys. J.3189101Google Scholar
  11. Chandrasekhar, I., Kastenholz, M.A., Lins, R.D., Oostenbrink, C., Schuler, L.D., Tieleman, D.P., Gunsteren, W.F. 2003Eur. Biophys. J.326777Google Scholar
  12. Czechtizky, W., Daura, X., Vasella, A., Gunsteren, W.F. 2001Helv. Chim. Acta8421322145Google Scholar
  13. Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W.F., Mark, A.E. 1999Angew. Chem. Ind. Ed.38236240Google Scholar
  14. Daura, X., Glättli, A., Gee, P., Peter, C., Gunsteren, W.F. 2002Adv. Protein Chem.62341360Google Scholar
  15. Daura, X., Mark, A.E., Gunsteren, W.F. 1998J. Comput. Chem.19535547Google Scholar
  16. Daura, X., Gunsteren, W.F., Rigo, D., Jaun, B., Seebach, D. 1997Chem.-Eur. J.314101417Google Scholar
  17. DeMarco, A., Llinas, M., Wüthrich, K. 1978Biopolymers>17617636Google Scholar
  18. Egberts, E., Marrink, S.-J., Berendsen, H.J.C. 1994Eur. Biophys. J.22423436Google Scholar
  19. Glättli, A., Daura, X., Gunsteren, W.F. 2002J. Chem. Phys.11698119828Google Scholar
  20. Hermans, J., Berendsen, H.J.C., Gunsteren, W.F., Postma, J.P.M. 1984Biopolymers2315131518Google Scholar
  21. Hünenberger, P.H. and van Gunsteren, W.F. (1997) In Computer Simulation of Biomolecular Systems, Theoretical and Experimental Applications, Vol. 3, van Gunsteren, W.F., Weiner, P.K. and Wilkinson, A.J. (Eds.), Kluwer Academic Publishers, Dordrecht, pp. 3–82. Google Scholar
  22. Hünenberger, P.H., Mark, A.E., Gunsteren, W.F. 1995J. Mol. Biol.252492502Google Scholar
  23. Jorgensen, W.L., Tirado-Rives, J. 1988J. Am. Chem. Soc.11016571666Google Scholar
  24. Kabsch, W., Sander, C. 1983Biopolymers2225772637Google Scholar
  25. Karplus, M. 1959J. Chem. Phys.301115Google Scholar
  26. Karplus, M., McCammon, J.A. 2002Nat. Struct. Biol.9646652Google Scholar
  27. Levitt, M. 1983J. Mol. Biol.168595620Google Scholar
  28. Levitt, M., Hirshberg, M., Sharon, R., Daggett, V. 1995Comput. Phys. Commun91215231Google Scholar
  29. MacKerell, A.D.,Jr., Wiorkiewiczkuczera, J., Karplus, M. 1995J. Am. Chem. Soc.1171194611975Google Scholar
  30. Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E., Wüthrich, K. 1998J. Biomol. NMR12123Google Scholar
  31. Momany, F.A., Rone, R. 1992J. Comput. Chem.13888900Google Scholar
  32. Nemethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H. A. 1992J. Phys. Chem.9664726484Google Scholar
  33. Oostenbrink, B.C., Pitera, J.W., Lipzig, M.M.H., Meerman, J.H.N., Gunsteren, W.F. 2000J. Med. Chem.4345944605Google Scholar
  34. Pardi, A., Billeter, M., Wüthrich, K. 1984J. Mol. Biol.180741751Google Scholar
  35. Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E.,III, DeBolt, S., Ferguson, D., Seibel, G., Kollman, P.A. 1995Comput. Phys. Commun91141Google Scholar
  36. Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C. 1977J. Comput. Phys.23327341Google Scholar
  37. Schuler, L.D., Gunsteren, W.F. 2000Mol. Sim.25301319Google Scholar
  38. Schuler, L.D., Daura, X., Gunsteren, W.F. 2001J. Comput. Chem.2212051218Google Scholar
  39. Schwalbe, H., Grimshaw, S.B., Spencer, A., Buck, M., Boyd, J., Dobson, C.M., Redfield, C., Smith, L. 2001Protein Sci.10677688Google Scholar
  40. Scott, W.R.P., Hünenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, P., Krüger, P., Gunsteren, W.F. 1999J. Phys. Chem. A10335963607Google Scholar
  41. Smith, L.J., Dobson, C.M., Gunsteren, W.F. 1996J. Mol. Biol.28615671580Google Scholar
  42. Smith, L.J., Dobson, C.M., Gunsteren, W.F. 1999Proteins367786Google Scholar
  43. Smith, L.J., Mark, A.E., Dobson, C.M., Gunsteren, W.F. 1995Biochemistry 341091810931Google Scholar
  44. Smith, L.J., Sutcliffe, M.J., Redfield, C., Dobson, C.M. 1991Biochemistry30986996Google Scholar
  45. Smith, L.J., Sutcliffe, M.J., Redfield, C., Dobson, C.M. 1993J. Mol. Biol.229930944Google Scholar
  46. Stocker, U., Gunsteren, W.F. 2000Proteins40145153Google Scholar
  47. Stocker, U., Spiegel, K., Gunsteren, W.F. 2000J. Biomol. NMR18112Google Scholar
  48. Tropp, J. 1980J. Chem. Phys.7260356043Google Scholar
  49. Gunsteren, W.F., Berendsen, H.J.C. 1987Groningen Molecular Simulation (GROMOS) Library ManualBiomosGroningenGoogle Scholar
  50. Gunsteren, W.F., Berendsen, H.J.C. 1990Angew. Chem. Int. Ed.299921023Google Scholar
  51. Gunsteren, W.F., Mark, A.E. 1998J. Chem. Phys.10861096116Google Scholar
  52. Gunsteren, W.F., Billeter, S.R., Eising, A.A., Hünenberger, P.H., Krüger, P., Mark, A.E., Scott, W.R.P., Tironi, I.G. 1996Biomolecular Simulation: The GROMOS96 Manual and User GuideVdf Hochschulverlag AG an der ETH ZürichZürichGoogle Scholar
  53. van Gunsteren, W.F., Bonvin, A.M.J.J., Daura, X. and Smith, L.J. (1999) In Structure, Computation and Dynamics in Protein NMR. Biol. Magnetic Resonance, Vol. 17, Krishna, K.N. and Berliner, L.J. (Eds.), Plenum Publishers, New York, pp. 3–35. Google Scholar
  54. Gunsteren, W.F., Bürgi, R., Peter, C., Daura, X. 2001Angew. Chem. Int. Ed.40351355Google Scholar
  55. van Gunsteren, W.F., Daura, X. and Mark, A.E. (1998) In Encyclopedia of Computational Chemistry, Vol. 2, von Ragué Schleyer, P. (Ed.), John Wiley & Sons, New York, pp. 1211–1216. Google Scholar
  56. Weiner, P.K., Kollman, P.A. 1981J. Comput. Chem.2287303Google Scholar
  57. Wüthrich, K., Billeter, M., Braun, W. 1983J. Mol. Biol.169949961Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • T. A. Soares
    • 1
  • X. Daura
    • 2
  • C. Oostenbrink
    • 1
  • L. J. Smith
    • 3
  • W. F. van Gunsteren
    • 1
  1. 1.Laboratory of Physical ChemistryETH Hönggerberg ZürichZürichSwitzerland
  2. 2.InstitucióCatalana de Recerca i Estudis Avancats and Institut de Biotecnologia i BiomedicinaUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Oxford Centre for Molecular Sciences, Central Chemistry LaboratoryUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations