Translational Research Symposium—collaborative efforts as driving forces of healthcare innovation

  • João Q. Coentro
  • Andrea De Pieri
  • Diana Gaspar
  • Dimitrios Tsiapalis
  • Dimitrios I. Zeugolis
  • Yves BayonEmail author
Clinical Applications of Biomaterials Review Article
Part of the following topical collections:
  1. Clinical Applications of Biomaterials


The 5th Translational Research Symposium was organised at the annual meeting of the European Society for Biomaterials 2018, Maastricht, the Netherlands, with emphasis on the future of emerging and smart technologies for healthcare in Europe. Invited speakers from academia and industry highlighted the vision and expectations of healthcare in Europe beyond 2020 and the perspectives of innovation stakeholders, such as small and medium enterprises, large companies and Universities. The aim of the present article is to summarise and explain the main statements made during the symposium, with particular attention on the need to identify unmet clinical needs and their efficient translation into healthcare solutions through active collaborations between all the participants involved in the value chain.



This work was supported by the: European Commission Horizon 2020, Marie Skłodowska-Curie Actions, Innovative Training Networks 2015, Tendon Therapy Train project, under the grant agreement number 676338; Science Foundation Ireland, Career Development Award, under the grant agreement number 15/CDA/3629; Science Foundation Ireland and the European Regional Development Fund, under grant agreement number 13/RC/2073.

Compliance with ethical standards

Conflict of interest

YB is an employee of Medtronic—Sofradim Production. The remaining authors declare that they have no conflict of interest.


  1. 1.
    Flores M, Glusman G, Brogaard K, Price ND, Hood L. P4 medicine: how systems medicine will transform the healthcare sector and society. J Pers Med. 2013;10:565–76.Google Scholar
  2. 2.
    Esther. Proposal for an industry driven initiative on emerging and strategic technologies for healthcare. 2015. Accessed 28 Dec 2018.
  3. 3.
    Fontaine O, Boisseau P, Weltring Klaus M. NanoMed 2020—enabling the European nanomedicine area until 2020. Eur J Nanomed. 2012;2–4:95.Google Scholar
  4. 4.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.Google Scholar
  5. 5.
    Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32:477–86.Google Scholar
  6. 6.
    Tibbitt MW, Rodell CB, Burdick JA, Anseth KS. Progress in material design for biomedical applications. Proc Natl Acad Sci USA. 2015;112:14444–51.Google Scholar
  7. 7.
    Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X, et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018;6:31.Google Scholar
  8. 8.
    Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98.Google Scholar
  9. 9.
    Gaspar D, Ryan CNM, Zeugolis DI. Multifactorial bottom-up bioengineering approaches for the development of living tissue substitutes. Faseb J. 2019;33:5741–54.Google Scholar
  10. 10.
    Kumar P, Satyam A, Cigognini D, Pandit A, Zeugolis DI. Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. J Tissue Eng Regen Med. 2018;12:6–18.Google Scholar
  11. 11.
    Cigognini D, Gaspar D, Kumar P, Satyam A, Alagesan S, Sanz-Nogues C, et al. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture—a step closer to physiologically relevant in vitro organogenesis. Sci Rep. 2016;6:30746.Google Scholar
  12. 12.
    Satyam A, Kumar P, Fan X, Gorelov A, Rochev Y, Joshi L, et al. Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. Adv Mater. 2014;26:3024–34.Google Scholar
  13. 13.
    Pugliese E, Coentro JQ, Zeugolis DI. Advancements and challenges in multidomain multicargo delivery vehicles. Adv Mater. 2018;30:e1704324.Google Scholar
  14. 14.
    Shologu N, Szegezdi E, Lowery A, Kerin M, Pandit A, Zeugolis DI. Recreating complex pathophysiologies in vitro with extracellular matrix surrogates for anticancer therapeutics screening. Drug Disco Today. 2016;21:1521–31.Google Scholar
  15. 15.
    Pene F, Courtine E, Cariou A, Mira JP. Toward theragnostics. Crit Care Med. 2009;37 1 Suppl:S50–S58.Google Scholar
  16. 16.
    Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029–238.Google Scholar
  17. 17.
    Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 2010;62:1052–63.Google Scholar
  18. 18.
    Europe M. The European Medical Technology Industry—in figures. 2016. Accessed 28 Dec 2018.
  19. 19.
    Gehr S, Garner CC. Rescuing the lost in translation. Cell. 2016;165:765–70.Google Scholar
  20. 20.
    Kurien T, Pearson RG, Scammell BE. Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Jt J. 2013;95-b:583–97.Google Scholar
  21. 21.
    Bayon Y, Bohner M, Eglin D, Procter P, Richards RG, Weber J, et al. Innovating in the medical device industry - challenges & opportunities ESB 2015 translational research symposium. J Mater Sci Mater Med. 2016;27:144.Google Scholar
  22. 22.
    Sharan AD, Szulc A, Krystal J, Yassari R, Laufer I, Bilsky MH. The integration of radiosurgery for the treatment of patients with metastatic spine diseases. J Am Acad Orthop Surg. 2014;22:447–54.Google Scholar
  23. 23.
    Kersten RF, van Gaalen SM, de Gast A, Oner FC. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J. 2015;15:1446–60.Google Scholar
  24. 24.
    Boriani S, Tedesco G, Ming L, Ghermandi R, Amichetti M, Fossati P, et al. Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: a preliminary report. Eur Spine J. 2018;27:874–81.Google Scholar
  25. 25.
    World Health Organisation. Global Report on Diabetes. World Health Organisation: 2016. ISBN: 978 92 4 156525 7.Google Scholar
  26. 26.
    Patterson C, Guariguata L, Dahlquist G, Soltesz G, Ogle G, Silink M. Diabetes in the young—a global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes Res Clin Pr. 2014;103:161–75.Google Scholar
  27. 27.
    Okere B, Lucaccioni L, Dominici M, Iughetti L. Cell therapies for pancreatic beta-cell replenishment. Ital J Pediatr. 2016;42:62.Google Scholar
  28. 28.
    Lind M, Svensson AM, Rosengren A. Glycemic control and excess mortality in type 1 diabetes. N. Engl J Med. 2015;372:880–1.Google Scholar
  29. 29.
    Hanazaki K, Munekage M, Kitagawa H, Yatabe T, Munekage E, Shiga M, et al. Current topics in glycemic control by wearable artificial pancreas or bedside artificial pancreas with closed-loop system. J Artif Organs. 2016;19:209–18.Google Scholar
  30. 30.
    Rickels MR. Recovery of endocrine function after islet and pancreas transplantation. Curr Diab Rep. 2012;12:587–96.Google Scholar
  31. 31.
    Shapiro AM, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017;13:268–77.Google Scholar
  32. 32.
    Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol. 2004;4:259–68.Google Scholar
  33. 33.
    Robertson RP. Islet transplantation as a treatment for diabetes—a work in progress. N Engl J Med. 2004;350(7):694–705.Google Scholar
  34. 34.
    Millman JR, Xie C, Van Dervort A, Gurtler M, Pagliuca FW, Melton DA. Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun. 2016;7:11463.Google Scholar
  35. 35.
    Nijhoff MF, de Koning EJP. Artificial pancreas or novel beta-cell replacement therapies: a race for optimal glycemic control? Curr Diab Rep. 2018;18:110.Google Scholar
  36. 36.
    Chauvierre C, Letourneur D. The European project NanoAthero to fight cardiovascular diseases using nanotechnologies. Nanomedicine. 2015;10:3391–400.Google Scholar
  37. 37.
    Villemin, J. N., Letourneur, D., & Chaubet, F. Fucoidans in nanomedicine. Marine drugs. 2016;14(8):145.Google Scholar
  38. 38.
    Yang M, Ma C, Sun J, Shao Q, Gao W, Zhang Y, et al. Fucoidan stimulation induces a functional maturation of human monocyte-derived dendritic cells. Int Immunopharmacol. 2008;8:1754–60.Google Scholar
  39. 39.
    Thelen T, Hao Y, Medeiros AI, Curtis JL, Serezani CH, Kobzik L, et al. The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. J Immunol. 2010;185:4328–35.Google Scholar
  40. 40.
    Kwak JY. Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs. 2014;12:851–70.Google Scholar
  41. 41.
    Dinesh S, Menon T, Hanna LE, Suresh V, Sathuvan M, Manikannan M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int J Biol Macromol. 2016;82:83–8.Google Scholar
  42. 42.
    Luyt CE, Meddahi-Pelle A, Ho-Tin-Noe B, Colliec-Jouault S, Guezennec J, Louedec L, et al. Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. J Pharm Exp Ther. 2003;305:24–30.Google Scholar
  43. 43.
    Juenet M, Aid-Launais R, Li B, Berger A, Aerts J, Ollivier V, et al. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials. 2018;156:204–16.Google Scholar
  44. 44.
    Rouzet F, Bachelet-Violette L, Alsac JM, Suzuki M, Meulemans A, Louedec L, et al. Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation. J Nucl Med. 2011;52:1433–40.Google Scholar
  45. 45.
    Mauri D, Ioannidis JPA, Pavlidis N. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst. 2005;97:188–94.Google Scholar
  46. 46.
    Zhao T-T, Xu H, Xu H-M, Wang Z-N, Xu Y-Y, Song Y-X, et al. The efficacy and safety of targeted therapy with or without chemotherapy in advanced gastric cancer treatment: a network meta-analysis of well-designed randomized controlled trials. Gastric Cancer. 2018;21:361–71.Google Scholar
  47. 47.
    Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.Google Scholar
  48. 48.
    Pang X, Du H-L, Zhang H-Q, Zhai Y-J, Zhai G-X. Polymer–drug conjugates: present state of play and future perspectives. Drug Disco Today. 2013;18:1316–22.Google Scholar
  49. 49.
    Marchal S, El Hor A, Millard M, Gillon V, Bezdetnaya L. Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs. 2015;75:1601–11.Google Scholar
  50. 50.
    Fortunato A, Grainger DW, Abou-El-Enein M. Enhancing patient-level clinical data access to promote evidence-based practice and incentivize therapeutic innovation. Adv Drug Deliv Rev. 2018;136–137:97–104.Google Scholar
  51. 51.
    Duda GN, Grainger DW, Frisk ML, Bruckner-Tuderman L, Carr A, Dirnagl U, et al. Changing the mindset in life sciences toward translation: a consensus. Sci Transl Med. 2014;6:264cm212.Google Scholar
  52. 52.
    Abou-El-Enein M, Duda GN, Gruskin EA, Grainger DW. Strategies for derisking translational processes for biomedical technologies. Trends Biotechnol. 2017;35:100–8.Google Scholar
  53. 53.
    Neves LS, Rodrigues MT, Reis RL, Gomes ME. Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies. Expert Rev Precis Med Drug Dev. 2016;1:93–108.Google Scholar
  54. 54.
    De Pieri A, Ribeiro S, Tsiapalis D, Eglin D, Bohner M, Dubruel P, et al. Joint academic and industrial efforts towards innovative and efficient solutions for clinical needs. J Mater Sci Mater Med. 2018;29:129.Google Scholar
  55. 55.
    Ohmann C, Canham S, Demotes J, Chene G, Lauritsen J, Martins H, et al. Raising standards in clinical research—the impact of the ECRIN data centre certification programme, 2011–2016. Contemp Clin Trials Commun. 2017;5:153–9.Google Scholar
  56. 56.
    Garattini S, Jakobsen JC, Wetterslev J, Bertele V, Banzi R, Rath A, et al. Evidence-based clinical practice: overview of threats to the validity of evidence and how to minimise them. Eur J Intern Med. 2016;32:13–21.Google Scholar
  57. 57.
    Neugebauer EA, Rath A, Antoine S-L, Eikermann M, Seidel D, Koenen C, et al. Specific barriers to the conduct of randomised clinical trials on medical devices. Trials. 2017;18:427.Google Scholar
  58. 58.
    Djurisic S, Rath A, Gaber S, Garattini S, Bertele V, Ngwabyt S-N, et al. Barriers to the conduct of randomised clinical trials within all disease areas. Trials. 2017;18:360.Google Scholar
  59. 59.
    West J, Salter A, Vanhaverbeke W, Chesbrough H. Open innovation: the next decade. Res Policy 2014;43:805–11.Google Scholar
  60. 60.
    Perkmann M, Tartari V, McKelvey M, Autio E, Broström A, D’Este P, et al. Academic engagement and commercialisation: a review of the literature on university–industry relations. Res Policy. 2013;42:423–42.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • João Q. Coentro
    • 1
    • 2
  • Andrea De Pieri
    • 1
    • 2
    • 3
  • Diana Gaspar
    • 1
    • 2
  • Dimitrios Tsiapalis
    • 1
    • 2
  • Dimitrios I. Zeugolis
    • 1
    • 2
  • Yves Bayon
    • 4
    Email author
  1. 1.Regenerative, Modular & Developmental Engineering Laboratory (REMODEL)National University of Galway Ireland (NUI Galway)GalwayIreland
  2. 2.Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Galway Ireland (NUI Galway)GalwayIreland
  3. 3.Proxy Biomedical, SpiddalGalwayIreland
  4. 4.Medtronic, Sofradim ProductionTrevouxFrance

Personalised recommendations