Effect of biomaterials hydrophobicity and roughness on biofilm development

  • Iker De-la-Pinta
  • Mónica Cobos
  • Julen Ibarretxe
  • Elizabeth Montoya
  • Elena Eraso
  • Teresa Guraya
  • Guillermo QuindósEmail author
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization


Most hospitalized patients are carriers of biomedical devices. Infections associated with these devices cause great morbidity and mortality, especially in patients in intensive care units. Numerous strategies have been designed to prevent biofilm development on biodevices. However, biofilm formation is a complex process not fully clarified. In the current study, roughness and hydrophobicity of different biomaterials was analyzed to assess their influences on the biofilm formation of four leading etiological causes of healthcare-associated infections, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Candida albicans, using a CDC biofilm reactor. Hydrophobic materials allowed the formation of more abundant and profuse biofilms. Roughness had effect on biofilm formation, but its influence was not significant when material hydrophobicity was considered.



We thank Dr Francisco José Álvarez and Dr Hector Lafuente from BioCruces Health Research Institute for their excellent technical assistance as well as Dr Ane Miren Zaldua from Leartiker Polymer R&D for the provision of the polyurethane disks. Our gratitude is extended to the Analytical and High-Resolution Microscopy Service of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (Sgiker) for the SEM imaging. ID-l-P received a scholarship from the ZabaldUz program (Universidad del País Vasco/Euskal Herriko Unibertsitatea). This work was supported by the Consejería de Educación, Universidades e Investigación of the Gobierno Vasco-Eusko Jaularitza [GIC 15/78 IT-990-16] and the Universidad del País Vasco/Euskal Herriko Unibertsitatea [UFI 11/25].

Compliance with ethical standards

Conflict of interest

We have no specific conflicts of interest related to the current manuscript but declare the following: GQ has received research grants from Astellas Pharma, Pfizer, Merck Sharp & Dohme, and Scynexis. GQ has served on advisory/consultant boards for Merck, Sharp & Dohme, and Scynexis, and he has received speaker honoraria from Abbvie, Astellas Pharma, Merck Sharp & Dohme, Pfizer, and Scynexis. EE has received grant support from Astellas Pharma and Pfizer SLU. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed above.


  1. 1.
    Centers for disease control and prevention. hai and antibiotic use prevalence survey. 2018.
  2. 2.
    European Centre for Disease Prevention and Control (ECDC). Annual epidemiological report antimicrobial resistance andhealthcare-associated infections 2014. 2016.
  3. 3.
    Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64:323–34.CrossRefGoogle Scholar
  4. 4.
    Palmquist A, Omar OM, Esposito M, Lausmaa J, Thomsen P. Titanium oral implants: surface characteristics, interface biology and clinical outcome. J R Soc Interface. 2010;7:S515–27.CrossRefGoogle Scholar
  5. 5.
    Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, et al. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J Mater Sci Mater Med. 2009;20:365–72.CrossRefGoogle Scholar
  6. 6.
    Zhang W, Zhang Z, Chen S, Macri L, Kohn J, Yelick PC. Mandibular jaw bone regeneration using human dental cell-seeded tyrosine-derived polycarbonate scaffolds. Tissue Eng Part A. 2016;22:985–93.CrossRefGoogle Scholar
  7. 7.
    Seckold T, Walker S, Dwyer T. A comparison of silicone and polyurethane PICC lines and postinsertion complication rates: a systematic review. J Vasc Access. 2015;16:167–77.CrossRefGoogle Scholar
  8. 8.
    Desrousseaux C, Sautou V, Descamps S, Traoré O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect. 2013;85:87–93.CrossRefGoogle Scholar
  9. 9.
    del Pozo JL, Rouse MS, Mandrekar JN, Sampedro MF, Steckelberg JM, Patel R. Effect of electrical current on the activities of antimicrobial agents against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2009;53:35–40.Google Scholar
  10. 10.
    Goeres DM, Loetterle LR, Hamilton MA, Murga R, Kirby DW, Donlan RM. Statistical assessment of a laboratory method for growing biofilms. Microbiology. 2005;151:757–62.CrossRefGoogle Scholar
  11. 11.
    ASTM E2562-17: Standard test method for quantification of Pseudomonas aeruginosa biofilm grown with high shear and continuous flow using CDC biofilm reactor. 2017.
  12. 12.
    Blanquer A, Hynowska A, Nogues C, Ibanez E, Sort J, Baro MD, et al. Effect of surface modifications of Ti40Zr10Cu38Pd12 bulk metallic glass and Ti-6Al-4V alloy on human osteoblasts in vitro biocompatibility. PLoS ONE. 2016;11:e0156644.CrossRefGoogle Scholar
  13. 13.
    Sassoni E, Andreotti S, Bellini A, Mazzanti B, Bignozzi MC, Mazzotti C, et al. Influence of mechanical properties, anisotropy, surface roughness and porosity of brick on FRP debonding force. Compos Part B: Eng. 2017;108:257–69.CrossRefGoogle Scholar
  14. 14.
    ISO 25178-2:2012. Geometrical product specifications (GPS)-surface texture: areal - Part 2: terms, definitions and surface texture parameters. 2012.
  15. 15.
    Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett. 1980;9:29–33.CrossRefGoogle Scholar
  16. 16.
    Krepsky N, Rocha Ferreira RB, Ferreira Nunes AP, Casado Lins UG, Costa e Silva Filho F, de Mattos-Guaraldi AL. et al. Cell surface hydrophobicity and slime production of Staphylococcus epidermidis Brazilian isolates. Curr Microbiol. 2003;46:280–6.Google Scholar
  17. 17.
    Amoroso PF, Adams RJ, Waters MG, Williams DW. Titanium surface modification and its effect on the adherence of Porphyromonas gingivalis: an in vitro study. Clin Oral Implants Res. 2006;17:633–7.CrossRefGoogle Scholar
  18. 18.
    Zaugg LK, Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Waltimo T, Zitzmann NU. Determinants of biofilm formation and cleanability of titanium surfaces. Clin Oral Implants Res. 2016;27:918–25.CrossRefGoogle Scholar
  19. 19.
    Ferreira Ribeiro C, Cogo-Müller K, Franco GC, Silva-Concílio LR, Sampaio Campos M, de Mello Rode S, et al. Initial oral biofilm formation on titanium implants with different surface treatments: an in vivo study. Arch Oral Biol. 2016;69:33–9.CrossRefGoogle Scholar
  20. 20.
    Koseki H, Yonekura A, Shida T, Yoda I, Horiuchi H, Morinaga Y, et al. Early Staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study. PLoS ONE. 2014;9:e107588.CrossRefGoogle Scholar
  21. 21.
    Jindal S, Anand S, Huang K, Goddard J, Metzger L, Amamcharla J. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers. J Dairy Sci. 2016;99:9502–13.CrossRefGoogle Scholar
  22. 22.
    Puckett SD, Taylor E, Raimondo T, Webster TJ. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31:706–13.CrossRefGoogle Scholar
  23. 23.
    Wu S, Altenried S, Zogg A, Zuber F, Maniura-Weber K, Ren Q. Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation. ACS Omega. 2018;3:6456–64.CrossRefGoogle Scholar
  24. 24.
    Xu LC, Siedlecki CA. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces. Biomed Mater. 2014;9:035003.CrossRefGoogle Scholar
  25. 25.
    Vadillo-Rodríguez V, Guerra-García-Mora AI, Perera-Costa D, Gónzalez-Martín ML, Fernández-Calderón MC. Bacterial response to spatially organized microtopographic surface patterns with nanometer scale roughness. Colloids Surf B: Biointerfaces. 2018;169:340–7.CrossRefGoogle Scholar
  26. 26.
    Ashokkumar S, Adler-Nissen J, Møller P. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability. Appl Surf Sci. 2012;263:86–94.CrossRefGoogle Scholar
  27. 27.
    Peltonen J, Jãrn M, Areva S, Linden M, Rosenholm JB. Topographical parameters for specifying a three-dimensional surface. Langmuir. 2004;20:9428–31.CrossRefGoogle Scholar
  28. 28.
    Al-Ahmad A, Wiedmann-Al-Ahmad M, Faust J, Bächle M, Follo M, Wolkewitz M, et al. Biofilm formation and composition on different implant materials in vivo. J Biomed Materi Res Part B: Appl Biomater. 2010;95B:101–9.CrossRefGoogle Scholar
  29. 29.
    Zhao B, van der Mei HC, Subbiahdoss G, de Vries J, Rustema-Abbing M, Kuijer R, et al. Soft tissue integration versus early biofilm formation on different dental implant materials. Dental Mater. 2014;30:716–27.CrossRefGoogle Scholar
  30. 30.
    Gyo M, Nikaido T, Okada K, Yamauchi J, Tagami J, Matin K. Surface response of fluorine polymer-incorporated resin composites to cariogenic biofilm adherence. Appl Environ Microbiol. 2008;74:1428–35.CrossRefGoogle Scholar
  31. 31.
    Wassmann T, Kreis S, Behr M, Buergers R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int J Implant Dent. 2017;3:32.CrossRefGoogle Scholar
  32. 32.
    Xu L, Siedlecki CA. Protein adsorption, platelet adhesion, and bacterial adhesion to polyethylene-glycol-textured polyurethane biomaterial surfaces. J Biomed Mater Res Part B: Appl Biomater. 2015;105:668–78.CrossRefGoogle Scholar
  33. 33.
    Tang H, Cao T, Liang X, Wang A, Salley SO, McAllister J, et al. Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. J Biomed Mater Res Part A. 2009;88A:454–63.CrossRefGoogle Scholar
  34. 34.
    Pontes C, Alves M, Santos C, Ribeiro MH, Gonçalves L, Bettencourt AF, et al. Can sophorolipids prevent biofilm formation on silicone catheter tubes? Int J Pharm. 2016;513:697–708.CrossRefGoogle Scholar
  35. 35.
    Andersen TE, Kingshott P, Palarasah Y, Benter M, Alei M, Kolmos HJ. A flow chamber assay for quantitative evaluation of bacterial surface colonization used to investigate the influence of temperature and surface hydrophilicity on the biofilm forming capacity of uropathogenic Escherichia coli. J Microbiol Methods. 2010;81:135–40.CrossRefGoogle Scholar
  36. 36.
    Frade JP, Arthington-Skaggs BA. Effect of serum and surface characteristics on Candida albicans biofilm formation. Mycoses. 2011;54:e154–62.CrossRefGoogle Scholar
  37. 37.
    Li J, Hirota K, Goto T, Yumoto H, Miyake Y, Ichikawa T. Biofilm formation of Candida albicans on implant overdenture materials and its removal. J Dent. 2012;40:686–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y EnfermeríaUniversidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHUBilbaoSpain
  2. 2.Departamento de Ciencia y Tecnología de Polímeros, Facultad de QuímicaUniversidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHUSan SebastiánSpain
  3. 3.Departamento de Física aplicada I, Escuela de Ingeniería de BilbaoUniversidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHUBilbaoSpain
  4. 4.Leartiker Polymer R&D, LeartikerMarkina-XemeinSpain
  5. 5.Departamento de Ingeniería Minera y Metalúrgica y Ciencia de los Materiales, Escuela de Ingeniería de BilbaoUniversidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHUBilbaoSpain

Personalised recommendations