Advertisement

Antibacterial properties and biocompatibility in vivo and vitro of composite coating of pure magnesium ultrasonic micro-arc oxidation phytic acid copper loaded

  • Jiaqi Song
  • Pengli Jin
  • Muqin LiEmail author
  • Jiguang Liu
  • Dongmei Wu
  • Haitao Yao
  • Jiaqi Wang
Biocompatibility Studies Original Research
  • 47 Downloads
Part of the following topical collections:
  1. Biocompatibility Studies

Abstract

Bone infection and implant secondary removal remains a clinical challenge. We used ultrasonic micro-arc oxidation (UMAO) and conversion of phytic acid copper plating to prepare a pure magnesium polyhydric biofilm; we evaluated the surface microstructures, phase, element composition, and wettability of the film in vitro. The antibacterial activity of films with different Cu contents was confirmed by coating method, imaging examination, and microbiological cultures in vitro. The biocompatibility of biofilms was confirmed by cell proliferation, vitality, and morphology assays in vitro and histological evaluation in vivo. MC3T3-E1 cells were co-cultured with different films to assess cell viability on the films. The results showed that the mass fraction of Cu increased with increasing time of copper plating, and the surface of the Cu group was more dense and uniform. Additionally, copper coating significantly inhibited the growth of E. coli and Staphylococcus aurous. We also found that the adhesion, proliferation, and differentiation of the cells on the surface of copper plating were enhanced. Copper implantation of animals in vivo showed fine ability to promote bone growth. Antibacterial activity and biocompatibility of pure magnesium UMAO-phytic acid-Cu3min implant film are excellent, so the film has potential application value in the treatment of bone implantation.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31370979); Heilongjiang Province University Innovation Team Building Plan (No. 2012TD010).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yufeng Z, Yuanhao W. Revolutionizing metallic biomaterials. Acta Metallurgica Sinica. 2017;53:257–97.Google Scholar
  2. 2.
    Huang K, Cai S, Xu G, Ye X, Dou Y, Ren M, et al. Preparation and charac-terization of mesoporous 45S5 bioactive glass-ceramic coatings on magnesium alloy for corrosion protection. J Alloy Compd. 2013;580:290–7.CrossRefGoogle Scholar
  3. 3.
    Vormann J. Magnesium: nutrition and metabolism. Mol Asp Med. 2003;24:27–37.CrossRefGoogle Scholar
  4. 4.
    Witte F. The history of biodegradable magnesium implants: a re-view. Acta Biomater. 2010;6:1680–92.CrossRefGoogle Scholar
  5. 5.
    Fischerauer SF, Kraus T, Wu X, Tangl S, Sorantin E, Hänzi AC et al. In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats. Acta Biomater. 2013;9:5411–20.CrossRefGoogle Scholar
  6. 6.
    Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10:4561–73.CrossRefGoogle Scholar
  7. 7.
    Liu W, Cao F, Xia Y, Chang L, Zhang J. Localized corrosion of magnesium alloys in nacl solutions explored by scanning electrochemical microscopy in feedback mode. Electrochimica Acta. 2014;132:377–88.CrossRefGoogle Scholar
  8. 8.
    Peng Q, Guo J, Fu H, et al. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases. Sci Rep. 2014;4:3620.CrossRefGoogle Scholar
  9. 9.
    Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014;77:1–34.CrossRefGoogle Scholar
  10. 10.
    Jin W, Wu G, Feng H, Wang W, Zhang X, Chu PK. Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation. Corrosion Sci. 2015;94:142–55.CrossRefGoogle Scholar
  11. 11.
    Zeng RC, Cui LY, Jiang K, Liu R, Zhao BD, Zheng YF. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly (l-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. Acs Appl Mater Interfaces. 2016;8:10014–28.CrossRefGoogle Scholar
  12. 12.
    Han J, Wan Pe, Sun Y, Liu Z, Fan X, Tan L et al. Fabrication and evaluation of a bioactive Sr–Ca–P contained micro-arc oxidation coating on magnesium strontium alloy for bone repair application. J Mater Sci Technol. 2015;32:233–44.CrossRefGoogle Scholar
  13. 13.
    Han XG, Zhu XP, Lei MK. Electrochemical properties of microarc oxidation films on a magnesium alloy modified by high-intensity pulsed ion beam. Surf Coat Technol. 2011;206:874–8.CrossRefGoogle Scholar
  14. 14.
    Pan YK, Chen CZ, Wang DG, Yu X, Lin ZQ. Influence of additives on microstructure and property of microarc oxidized Mg-Si-O coatings. Ceramics Int. 2012;38:5527–33.CrossRefGoogle Scholar
  15. 15.
    Qu L-J, Li M-Q, Zhang E-L, Ma C, Li Y-de. Corrosion resistance of magnesium alloy coated by ultrasonic-micro rc oxidation in simulated body fluid. Trans Mater Heat Treat. 2013;34:130–5.Google Scholar
  16. 16.
    Wei F, Li M, Guo X, Li Y. Effects of phytic acid on protective performance of film formed on pure magnesium by ultrasonic micro-arc oxidation, China. Surf Eng. 2015;28:78–83.Google Scholar
  17. 17.
    Hernández-Alvarado LA, Hernández LS, Lomelí MA, Miranda JM, Narváez L, Diaz I et al. Phytic acid coating on Mg-based materials for biodegradable temporary endoprosthetic applications. J Alloys Compd. 2016;664:609–18.CrossRefGoogle Scholar
  18. 18.
    Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Progress in Neurobiology. 2014;116:33–57.CrossRefGoogle Scholar
  19. 19.
    Liu J, Li F, Liu C, Wang H, Ren B, Yang KE et al. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater Sci Eng: C. 2014;35:392–400.CrossRefGoogle Scholar
  20. 20.
    Ibrahim M, Wang F, Lou MM, Xie GL, Li B, Bo Z et al. Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria. J Biosci Bioeng. 2011;112:570–6.CrossRefGoogle Scholar
  21. 21.
    Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment. Fems Microbiol Rev. 2003;27:197–213.CrossRefGoogle Scholar
  22. 22.
    Wan YZ, Raman S, He F, Huang Y. Surface modification of medical metals by ion implantation of silver and copper. Vacuum. 2007;81:1114–8.CrossRefGoogle Scholar
  23. 23.
    Stranak V, Wulff H, Rebl H, Zietz C, Arndt K, Bogdanowicz R et al. Deposition of thin titanium–copper films with antimicrobial effect by advanced magnetron sputtering methods. Mater Sci Eng C. 2011;31:1512–9.CrossRefGoogle Scholar
  24. 24.
    Li Y, Liu L, Wan P, Zhai Z, Mao Z, Ouyang Z et al. Biodegradale Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: invitro and in vivo evaluations. Biomaterials. 2016;106:250–63.CrossRefGoogle Scholar
  25. 25.
    Nan H, Zhu L, Liu H, Li W. Protection of NdFeB magnets by corrosion resistance phytic acid conversion film. Appl Surf Sci. 2015;355:1215–21.CrossRefGoogle Scholar
  26. 26.
    Liu R, Memarzadeh K, Chang B, Zhang Y, Ma Z, Allaker RP et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6:29985.CrossRefGoogle Scholar
  27. 27.
    Savelyev Y, Gonchar A, Movchan B, Gornostay A, Vozianov S, Rudenko A et al. Antibacterial polyurethane materials with silver and copper nanoparticles. Mater Today: Proc. 2017;4:87–94.Google Scholar
  28. 28.
    Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res Part B Appl Biomater. 2009;91B:373–80.CrossRefGoogle Scholar
  29. 29.
    Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27:2331–9.CrossRefGoogle Scholar
  30. 30.
    Mclaren JS, White LJ, Cox HC, Ashraf W, Rahman CV, Blunn GW et al. A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model. Eur CellsMater. 2014;27:332–49.Google Scholar
  31. 31.
    Sun Q, Luo W, Liangdan, Guo T, Ma S, Zhou Y et al. Research progress of nano-zinc antibacterial mechanism. J Oral Sci Res. 2015;31:195–7.Google Scholar
  32. 32.
    Zhao B, Feng W, Shang D, Zhang W, Du KQ, Zhong M. The antibacterial properties of Ca and Zn-containing coatings prepared with micro-arc oxidation. Shanghai J Stomatol. 2012;21:266–9.Google Scholar
  33. 33.
    Liu J-G, Song J-Q, Li M-Q, Jin P-L, Wei F-H. Antibacterial roperties of Pure Magnesium Made on Biological Film Treated by Ultrasonic Micro-arc Oxidation Phytic Acid with Chemical Galvanizing, China. Surf Eng. 2016;29:83–89.Google Scholar
  34. 34.
    Niu T, Ding Z, Dong F. Effects of differ ent titanium sur faces on F-actin cytoskeleton of osteoblast. West China J Stomat. 2007;25:606–10.Google Scholar
  35. 35.
    Hallab NJ, Bundy KJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;7:55–71.CrossRefGoogle Scholar
  36. 36.
    Ohtani K, Sakamoto H, Rutherford T, Chen Z, Satoh Ka, Naftolin Fr. Ezrin, a membrane-cytoskeletal linking protein, is involved in the process of invasion of endometrial cancer cells. Cancer Lett. 1999;147:31–38.CrossRefGoogle Scholar
  37. 37.
    Liu B, Li G, Li X, Zhu X, Li J, Wu D. Research progress of cell electrochemistry in toxicology. [C]// 2015 International Conference on Toxicity Test Alternatives and Translational Toxicology. 0.Google Scholar
  38. 38.
    Zhao J, Zhu X-L, Li G-X. Research progress in electroanalysis of cells. Chinese J Anal Chem. 2012;40:823–9.Google Scholar
  39. 39.
    Gao T, Feng J un, Ci Yunxiang, Progress in electrochemistry of living cells, Progress In Chemistry. 1998;305–11.Google Scholar
  40. 40.
    Jin S, Ren L, Yang K. Bio-functional Cu containing biomaterials: a new way to enhance bio-adaption of biomaterials. J Mate Sci Technol. 2016;32:835–9.CrossRefGoogle Scholar
  41. 41.
    Zhu W, Zhang Z, Gu B, yingSun J, Zhu L. Biological activity and antibacterial property of nano-structured TiO2 coating incorporated with Cu prepared by micro-arc oxidation. J Mater Sci Technol. 2013;29:237–44.CrossRefGoogle Scholar
  42. 42.
    Wang Fu, Wang L, Gu L. The culture of periosteal-derived osteoblast (POB) in vitro. China J Mod Med. 2000;10:3–4.Google Scholar
  43. 43.
    Zhang H, Li Q, Lu W. Histological study of the role of cortical bone in bone defect repair process. Chinese J Tissue Eng Res. 2002;6:2374–5.Google Scholar
  44. 44.
    Cheng P, Han P, Zhao C, Zhang S, Wu H, Ni J, Hou P, Zhang Y, Liu J, Xu H, Liu S, Zhang X, Zheng Y, Chai Y. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomater. 2016;81:14–6.CrossRefGoogle Scholar
  45. 45.
    Rössig C, Angrisani N, Helmecke P, Besdo S, Seitz J-M, Welke B, Fedchenko N, Kock H, Reifenrath J. In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model. Acta Biomater. 2015;25:369–83.CrossRefGoogle Scholar
  46. 46.
    Katharina J, Hiroaki S, Hanna T, Andreas G, Norbert H, Frank F, Hartmut S, Johannes MR, Wolfgang L, Regine W-R, Eric H. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. Acta Biomater. 2016;36:350–60.CrossRefGoogle Scholar
  47. 47.
    Wang X, Cheng F, Liu J, Smått J-H, Gepperth D, Astusaari M, Xu C, Hupa L. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater. 2016;46:286CrossRefGoogle Scholar
  48. 48.
    Zhao S, Wang H, Zhang Y, Huang W, Rahaman MN, Liu Z, Wang D, Zhang C. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Acta Biomaterialia. 2015;14:85–96.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiaqi Song
    • 1
  • Pengli Jin
    • 2
  • Muqin Li
    • 2
    Email author
  • Jiguang Liu
    • 2
  • Dongmei Wu
    • 3
  • Haitao Yao
    • 4
  • Jiaqi Wang
    • 5
  1. 1.Jiamusi University School of StomatologyJiamusiChina
  2. 2.Jiamusi University School of Materials Science and EngineeringJiamusiChina
  3. 3.Jiamusi University College of PharmacyJiamusiChina
  4. 4.Jiamusi University School of Basic Medical ScienceJiamusiChina
  5. 5.Second Affiliated Stomatological Hospital of Jiamusi UniversityJiamusiChina

Personalised recommendations