In vitro and in vivo evaluation of chitosan scaffolds combined with simvastatin-loaded nanoparticles for guided bone regeneration

  • Yan Xue
  • Mingyao Wu
  • Zongren Liu
  • Jinhua Song
  • Shuyu Luo
  • Hongjie Li
  • Yuan Li
  • Lichun Jin
  • Binbin Guan
  • Mingli Lin
  • Fuyu Chen
  • Chenxin Jin
  • Deping LiuEmail author
  • Yanqiu LiEmail author
  • Xu ZhangEmail author
Delivery Systems Original Research
Part of the following topical collections:
  1. Delivery Systems


The objective of this study was to fabricate and characterize chitosan combined with different amounts of simvastatin-loaded nanoparticles and to investigate their potential for guided bone regeneration in vitro and in vivo. Different SIM-CSN formulations were combined into a chitosan scaffold (SIM-CSNs-S), and the morphology, simvastatin release profile, and effect on cell proliferation and differentiation were investigated. For in vivo experiments, ectopic osteogenesis and the critical-size cranial defect model in SD rats were chosen to evaluate bone regeneration potential. All three SIM-CSNs-S formulations had a porous structure and exhibited sustained simvastatin release. CSNs-S showed excellent degradation and biocompatibility characteristics. The 4 mg SIM-CSNs-S formulation stimulated higher BMSC ALP activity levels, demonstrated significantly earlier collagen enhancement, and led to faster bone regeneration than the other formulations. SIM-CSNs-S should have a significant effect on bone regeneration.


  • Simvastatin-loaded nanoparticles of chitosan.

  • The preparing process of Chitosan scaffolds combined with simvastatin loaded is simple, low-cost and environmental friendly.

  • A sustained release of simvastatin.



This work was jointly supported by the National Natural Science Foundation of China (Grant no: 81571016, Grant no: 51272181 and Grant no: 51672030), the science and technology development fund project of Tianjin University (Grant no: 20110410) and the scientific research fund of Stomatology Hospital Affiliated with Tianjin Medical University (Grant no: 2013YKYQ01).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32:9622–9. CrossRefGoogle Scholar
  2. 2.
    Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286:1946–9.CrossRefGoogle Scholar
  3. 3.
    Park JB. The use of simvastatin in bone regeneration. Med Oral Patol Oral Cir Bucal. 2009;14:e485–8.Google Scholar
  4. 4.
    Sakoda K, Yamamoto M, Negishi Y, Liao JK, Node K, Izumi Y. Simvastatin decreases IL-6 and IL-8 production in epithelial cells. J Dent Res. 2006;85:520–3.CrossRefGoogle Scholar
  5. 5.
    Alam S, Ueki K, Nakagawa K, Marukawa K, Hashiba Y, Yamamoto E, et al. Statin-induced bone morphogenetic protein (BMP) 2 expression during bone regeneration: an immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:22–9. CrossRefGoogle Scholar
  6. 6.
    Sonobe M, Hattori K, Tomita N, Yoshikawa T, Aoki H, Takakura Y, et al. Stimulatory effects of statins on bone marrow-derived mesenchymal stem cells. Study of a new therapeutic agent for fracture. Biomed Mater Eng. 2005;15:261–7.Google Scholar
  7. 7.
    Takenaka M, Hirade K, Tanabe K, Akamatsu S, Dohi S, Matsuno H, et al. Simvastatin stimulates VEGF release via p44/p42 MAP kinase in vascular smooth muscle cells. Biochem Biophys Res Commun. 2003;301:198–203.CrossRefGoogle Scholar
  8. 8.
    Gutierrez GE, Lalka D, Garrett IR, Rossini G, Mundy GR. Transdermal application of lovastatin to rats causes profound increases in bone formation and plasma concentrations. Osteoporos Int. 2006;17:1033–42. CrossRefGoogle Scholar
  9. 9.
    Stein D, Lee Y, Schmid MJ, Killpack B, Genrich MA, Narayana N, et al. Local simvastatin effects on mandibular bone growth and inflammation. J Periodontol. 2005;76:1861–70.CrossRefGoogle Scholar
  10. 10.
    Thylin MR, Mcconnell JC, Schmid MJ, Reckling RR, Ojha J, Bhattacharyya I, et al. Effects of simvastatin gels on murine calvarial bone. J Periodontol. 2002;73:1141–8.CrossRefGoogle Scholar
  11. 11.
    Nyan M, Sato D, Oda M, Machida T, Kobayashi H, Nakamura T, et al. Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect. J Pharmacol Sci. 2007;104:384–6.CrossRefGoogle Scholar
  12. 12.
    Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280:874–7.CrossRefGoogle Scholar
  13. 13.
    Tai I, Fu Y, Wang C, Chang J, Ho M. Local delivery of controlled-release simvastatin/PLGA/HAp microspheres enhances bone repair. Int J Nanomed. 2013;8:3895–905.Google Scholar
  14. 14.
    Chen S, Yang J, Zhang SY, Feng L, Ren J. Effects of simvastatin gel on bone regeneration in alveolar defects in miniature pigs. Chin Med J (Engl). 2011;124:3953–8.Google Scholar
  15. 15.
    Liu Y, Ou M, Liu H, Gu M, Lv L, Fan C, et al. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration. Biomaterials. 2014;35:4489–98.CrossRefGoogle Scholar
  16. 16.
    Lee JB, Kim JE, Balikov DA, Bae MS, Heo DN, Lee D, et al. Poly(l-lactic acid)/gelatin fibrous scaffold loaded with simvastatin/beta-cyclodextrin-modified hydroxyapatite inclusion complex for bone tissue regeneration. Macromol Biosci. 2016;16:1027–38. CrossRefGoogle Scholar
  17. 17.
    Huang X, Huang Z, Li W. Highly efficient release of simvastatin from simvastatin-loaded calcium sulphate scaffolds enhances segmental bone regeneration in rabbits. Mol Med Rep. 2014;9:2152–8. CrossRefGoogle Scholar
  18. 18.
    Murtaza G. Solubility enhancement of simvastatin: a review. Acta Pol Pharm. 2012;69:581.Google Scholar
  19. 19.
    Shavi GV, Nayak UY, Reddy MS, Karthik A, Deshpande PB, Kumar AR, et al. Sustained release optimized formulation of anastrozole-loaded chitosan microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2011;22:865–78.CrossRefGoogle Scholar
  20. 20.
    Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.CrossRefGoogle Scholar
  21. 21.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61:1189–224.CrossRefGoogle Scholar
  22. 22.
    Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339–49.CrossRefGoogle Scholar
  23. 23.
    Martins AF, De Oliveira DM, Pereira AGB, Rubira AF, Muniz EC. Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. Int J Biol Macromol. 2012;51:1127–33.CrossRefGoogle Scholar
  24. 24.
    Ma S, Chen Z, Qiao F, Sun Y, Yang X, Deng X, et al. Guided bone regeneration with tripolyphosphate cross-linked asymmetric chitosan membrane. J Dent. 2014;42:1603–12.CrossRefGoogle Scholar
  25. 25.
    Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21:567–76.CrossRefGoogle Scholar
  26. 26.
    Lee J, Nam S, Im S, Park Y, Lee Y, Seol Y, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release. 2002;78:187–97.CrossRefGoogle Scholar
  27. 27.
    Cerchiara T, Abruzzo A, Cagno MD, Bigucci F, Bauerbrandl A, Parolin C, et al. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm. 2015;92:112–9.CrossRefGoogle Scholar
  28. 28.
    Nath SD, Linh NT, Sadiasa A, Lee BT. Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bone tissue regeneration. J Biomater Appl. 2014;28:1151–63.CrossRefGoogle Scholar
  29. 29.
    He Y, Dong Y, Cui F, Chen X, Lin R. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model. PLoS ONE. 2015;10:e0135366.CrossRefGoogle Scholar
  30. 30.
    Shavi GV, Nayak UY, Reddy MS, Karthik A, Deshpande PB, Kumar AR, et al. Sustained release optimized formulation of anastrozole-loaded chitosan microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2011;22:865–78. CrossRefGoogle Scholar
  31. 31.
    Madihally SV, Matthew HWT. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–42.CrossRefGoogle Scholar
  32. 32.
    Ma J, Wang H, He B, Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials. 2001;22:331–6.CrossRefGoogle Scholar
  33. 33.
    Neffe AT, Pierce BF, Tronci G, Ma N, Pittermann E, Gebauer T, et al. One step creation of multifunctional 3D architectured hydrogels inducing bone regeneration. Adv Mater. 2015;27:1738–44.CrossRefGoogle Scholar
  34. 34.
    Polocorrales L, Latorreesteves M, Ramirezvick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14:15–56.CrossRefGoogle Scholar
  35. 35.
    Brien FJO, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–41.CrossRefGoogle Scholar
  36. 36.
    Cho WJ, Kim JH, Oh SH, Nam HH, Kim JM, Lee JH. Hydrophilized polycaprolactone nanofiber mesh-embedded poly(glycolic-co-lactic acid) membrane for effective guided bone regeneration. J Biomed Mater Res A. 2009;91:400–7.CrossRefGoogle Scholar
  37. 37.
    Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res. 2005;340:2403–10.CrossRefGoogle Scholar
  38. 38.
    Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274:1–33.CrossRefGoogle Scholar
  39. 39.
    Mundy GR, Garrett R, Harris SE, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286:1946–9.CrossRefGoogle Scholar
  40. 40.
    Baek KH, Lee W, Oh KW, Tae HJ, Lee JM, Lee EJ, et al. The effect of simvastatin on the proliferation and differentiation of human bone marrow stromal cells. J Korean Med Sci. 2005;20:438–44.CrossRefGoogle Scholar
  41. 41.
    Solomon DH, Finkelstein JS, Wang PS, Avorn J. Statin lipid-lowering drugs and bone mineral density. Pharmacoepidemiol Drug Saf. 2005;14:219–26.CrossRefGoogle Scholar
  42. 42.
    Oryan A, Kamali A, Moshiri A. Potential mechanisms and applications of statins on osteogenesis: current modalities, conflicts and future directions. J Control Release. 2015;215:12–24.CrossRefGoogle Scholar
  43. 43.
    Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, et al. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun. 2003;308:458–62.CrossRefGoogle Scholar
  44. 44.
    Solomon DH, Finkelstein JS, Wang PS, Avorn J. Statin lipid-lowering drugs and bone mineral density. Pharmacoepidemiol Drug Saf. 2005;14:219–26.CrossRefGoogle Scholar
  45. 45.
    Scott MA, Levi B, Askarinam A, Nguyen A, Rackohn T, Ting K, et al. Brief review of models of ectopic bone formation. Stem Cells Dev. 2012;21:655–67.CrossRefGoogle Scholar
  46. 46.
    Kuboki Y, Jin Q, Kikuchi M, Mamood J, Takita H. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res. 2002;43:529–34.CrossRefGoogle Scholar
  47. 47.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.CrossRefGoogle Scholar
  48. 48.
    Anderson JM, Mcnally AK. Biocompatibility of implants: lymphocyte/macrophage interactions. Semin Immunopathol. 2011;33:221–33.CrossRefGoogle Scholar
  49. 49.
    Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruti A, Mooney DJ. Regulating bone formation via controlled scaffold degradation. J Dent Res. 2003;82:903–8.CrossRefGoogle Scholar
  50. 50.
    Villa MM, Wang L, Huang J, Rowe DW, Wei M. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B. 2015;103:243–53.CrossRefGoogle Scholar
  51. 51.
    De Peppo GM, Marcoscampos I, Kahler DJ, Alsalman D, Shang L, Vunjaknovakovic G, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci USA. 2013;110:8680–5.CrossRefGoogle Scholar
  52. 52.
    Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A. 2014;20:3142–53.CrossRefGoogle Scholar
  53. 53.
    Nikukar H, Reid SWJ, Tsimbouri PM, Riehle MO, Curtis ASG, Dalby MJ. Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano. 2013;7:2758–67.CrossRefGoogle Scholar
  54. 54.
    Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;205:299–308.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
  2. 2.LangFang Health Vocational CollegeLangfangChina
  3. 3.Department of Stomatology of Tianjin Medical University General Hospital, Binhai HospitalTianjinChina
  4. 4.Department of Stomatology of Tianjin Medical University General HospitalTianjinChina
  5. 5.Department of Cardiology, Beijing HospitalNational Center of GerontologyBeijingChina

Personalised recommendations