Osteoblast adhesion and response mediated by terminal –SH group charge surface of SiOxCy nanowires

  • Benedetta Ghezzi
  • Paola LagonegroEmail author
  • Roberta Pece
  • Ludovica Parisi
  • Massimiliano Bianchi
  • Roberta Tatti
  • Roberto Verucchi
  • Giovanni Attolini
  • Martina Quaretti
  • Guido M. Macaluso
Engineering and Nano-engineering Approaches for Medical Devices Original Research
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices


Robust cell adhesion is known to be necessary to promote cell colonization of biomaterials and differentiation of progenitors. In this paper, we propose the functionalization of Silicon Oxycarbide (SiOxCy) nanowires (NWs) with 3-mercaptopropyltrimethoxysilane (MPTMS), a molecule containing a terminal –SH group. The aim of this functionalization was to develop a surface capable to adsorb proteins and promote cell adhesion, proliferation and a better deposition of extracellular matrix. This functionalization can be used to anchor other structures such as nanoparticles, proteins or aptamers. It was observed that surface functionalization markedly affected the pattern of protein adsorption, as well as the in vitro proliferation of murine osteoblastic cells MC3T3-E1, which was increased on functionalized nanowires (MPTMS-NWs) compared to bare NWs (control) (p < 0.0001) after 48 h. The cells showed a better adhesion on MPTMS-NWs than on bare NWs, as confirmed by immunofluorescence studies on the cytoskeleton, which showed a more homogeneous vinculin distribution. Gene expression analysis showed higher expression levels for alkaline phosphatase and collagen I, putative markers of the osteoblast initial differentiation stage. These results suggest that functionalization of SiOxCy nanowires with MPTMS enhances cell growth and the expression of an osteoblastic phenotype, providing a promising strategy to improve the biocompatibility of SiOxCy nanowires for biomedical applications.



The authors would like to thank Dr. Galli Gianfranco (Dip. Scienze Matematiche, Fisiche e Informatiche, University of Parma, Parco Area delle Scienze 7/A, 43123 Parma, Italy) for his technical help in Z-potential measurements.

Author contributions

The paper was written through contributions of all authors. All authors have given approval to the final version of the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Westcott SL, Oldenburg SJ, Lee TR, Halas NJ. Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle Surfaces. Langmuir. 1998;14:5396–401. Scholar
  2. 2.
    Galli C, Parisi L, Smerieri MA, Passeri G, Guizzardi S, Costa F, et al. Improved scaffold biocompatibility through anti-fibronectin aptamer functionalization. Acta Biomater. 2016;42:147–56.CrossRefGoogle Scholar
  3. 3.
    Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater. 2017;56:3–13.CrossRefGoogle Scholar
  4. 4.
    Lumetti S, Consolo U, Galli C, Multinu A, Piersanti L, Bellini P5, et al. Fresh-frozen bone blocks for horizontal ridge augmentation in the upper maxilla: 6-month outcomes of a randomized controlled trial.Clin Implant Dent Relat Res. 2014;16:116–23.CrossRefGoogle Scholar
  5. 5.
    Mebarki M, Coquelin L, Layrolle P, Battaglia S, Tossou M, Hernigou P, et al. Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 2017;59:94–107.CrossRefGoogle Scholar
  6. 6.
    Ghiacci G, Graiani G, Ravanetti F, Lumetti S, Manfredi E, Galli C, et al. Over-inlay’ block graft and differential morphometry: a novel block graft model to study bone regeneration and host-to-graft interfaces in rats. J Periodontal Implant Sci. 2016;46:220–33.CrossRefGoogle Scholar
  7. 7.
    Galli C, Parisi L, Elviri L, Bianchera A, Smerieri A, Lagonegro P, et al. Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion. Biomed Mater. 2016;11:015004CrossRefGoogle Scholar
  8. 8.
    Parisi L, Galli C, Bianchera A, Lagonegro P, Elviri L, Smerieri A, et al. Anti-fibronectin aptamers improve the colonization of chitosan films modified with D-(+) Raffinose by murine osteoblastic cells. J Mater Sci Mater Med. 2017;28:136CrossRefGoogle Scholar
  9. 9.
    Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 2010;6:3824–46.CrossRefGoogle Scholar
  10. 10.
    An J, Chua CK, Yu T, Li H, Tan LP. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs. Nanomed (Lond). 2013;8:591–602.CrossRefGoogle Scholar
  11. 11.
    Mark KV on Der, Park J, Bauer S, Schmuki P. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 2010;339:131–53.CrossRefGoogle Scholar
  12. 12.
    Kuo S-W, Lin HI, Ho JH, Shih YR, Chen HF, Yen TJ, et al. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials. 2012;33:5013–22.CrossRefGoogle Scholar
  13. 13.
    Lagonegro P, Rossi F, Galli C, Smerieri A, Alinovi R, Pinelli S, et al. A cytotoxicity study of silicon oxycarbide nanowires as cell scaffold for biomedical applications. Mater Sci Eng C. 2017;73:465–71.CrossRefGoogle Scholar
  14. 14.
    Tamayo A, Rubio J, Rubio F, Oteo JL, Riedel R. Texture and micro-nanostructure of porous silicon oxycarbide glasses prepared from hybrid materials aged in different solvents. J Eur Ceram Soc. 2011;31:1791–801.CrossRefGoogle Scholar
  15. 15.
    Gourevitch D, Kossenkov AV, Zhang Y, Clark L, Chang C, Showe LC, et al. Inflammation and its correlates in regenerative wound healing: an alternate. Perspect, Adv Wound care. 2014;3:592–603.CrossRefGoogle Scholar
  16. 16.
    Fabbri F, Rossi F, Melucci M, Manet I, Attolini G, Favaretto L, et al. Optical properties of hybrid T3Pyr/SiO2/3C-SiC nanowires. Nanoscale Res Lett. 2012;7:680CrossRefGoogle Scholar
  17. 17.
    Rossi F, Bedogni E, Bigi F, Rimoldi T, Cristofolini L, Pinelli S, et al. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy. Sci Rep. 2015;5:7606CrossRefGoogle Scholar
  18. 18.
    Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials. 2006;27:4783–93.CrossRefGoogle Scholar
  19. 19.
    Negri M, Dhanabalan SC, Attolini G, Lagonegro P, Campanini M, Bosi M, et al. Tuning the radial structure of core-shell silicon carbide nanowires. CrystEngComm. 2015;17:1258–63.CrossRefGoogle Scholar
  20. 20.
    Fabbri F, Rossi F, Negri M, Tatti R, Aversa L, Dhanabalan SC, et al. Carbon-doped SiO(x) nanowires with a large yield of white emission. Nanotechnology. 2014;25:185704CrossRefGoogle Scholar
  21. 21.
    Chastain J, Moulder JF, King RC, et al. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical electronics, Eden Prairie, Minn.: [s.n.], 1992.Google Scholar
  22. 22.
    Tatti R, Timpel M, Nardi MV, Fabbri F, Rossi R, Pasquardini L, et al. Surface functionalization of nanowires by supersonic molecular beams: demonstration of a hybrid SiC/SiO2/H2TPP(F) nanosystem for X-Ray induced singlet oxygen generation. Mol Syst Des Eng. 2017;2:165CrossRefGoogle Scholar
  23. 23.
    Sun M, Deng J, Gao C. The correlation between fibronectin adsorption and attachment of vascular cells on heparinized polycaprolactone membrane. J Colloid Interface Sci. 2015;448:231–7.CrossRefGoogle Scholar
  24. 24.
    Galli C, Piemontese M, Lumetti S, Ravanetti F, MacAluso GM, Passeri G. Actin cytoskeleton controls activation of Wnt/β-catenin signaling in mesenchymal cells on implant surfaces with different topographies. Acta Biomater. 2012;8:2963–8.CrossRefGoogle Scholar
  25. 25.
    Bays JL, DeMali KA. Vinculin in cell–cell and cell–matrix adhesions. Cell Mol Life Sci. 2017;74:2999–3009.CrossRefGoogle Scholar
  26. 26.
    Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4:66–80.CrossRefGoogle Scholar
  27. 27.
    Mackiewicz Z, Konttinen YT, Kaivosoja E, Stegajev V, Wagner HD, Levón J, et al. Extracellular matrix and tissue regeneration. In: Steinhoff G (Ed.). Regenerative Medicine—from Protocol to Patient. Cham: Springer International Publishing; 2016. p. 1–55.Google Scholar
  28. 28.
    Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–200.CrossRefGoogle Scholar
  29. 29.
    Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11:1–18.CrossRefGoogle Scholar
  30. 30.
    Choi J, Hwang J, Jeong Y, Park JM, Lee KH, Hong JW. Biomimetics: forecasting the future of science, engineering, and medicine. Int J Nanomed. 2015;10:5701.CrossRefGoogle Scholar
  31. 31.
    Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 1983;96:191–8.CrossRefGoogle Scholar
  32. 32.
    Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res. 1999;14:893–903.CrossRefGoogle Scholar
  33. 33.
    Hayashi Y, Furue MK, Okamoto T, Ohnuma K, Myoishi Y, Fukuhara Y, et al. Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells. 2007;25:3005–15.CrossRefGoogle Scholar
  34. 34.
    Bershadsky A, Kozlov M, Geiger B. Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize introduction: why are cell adhesions mechanosensitive? Curr Opin Cell Biol. 2006;18:472–81.CrossRefGoogle Scholar
  35. 35.
    Cavalcanti-Adam EA, Micoulet A, Blümmel J, Auernheimer J, Kessler H, Spatz JP. Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur J Cell Biol. 2006;85:219–24.Epub 2005 Oct 10.CrossRefGoogle Scholar
  36. 36.
    Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010;31:1299–306.CrossRefGoogle Scholar
  37. 37.
    Tojkander S, Gateva G, Lappalainen P. Actin stress fibers - assembly, dynamics and biological roles. J Cell Sci. 2012;125:1855–64.CrossRefGoogle Scholar
  38. 38.
    Farley JR, Hall SL, Tanner MA, Wergedal JE. Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium. J Bone Miner Res. 1994;9:497–508.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Benedetta Ghezzi
    • 1
    • 2
  • Paola Lagonegro
    • 3
    • 4
    Email author
  • Roberta Pece
    • 1
    • 2
    • 5
  • Ludovica Parisi
    • 1
    • 2
  • Massimiliano Bianchi
    • 2
  • Roberta Tatti
    • 6
  • Roberto Verucchi
    • 6
  • Giovanni Attolini
    • 4
  • Martina Quaretti
    • 4
  • Guido M. Macaluso
    • 1
    • 2
    • 3
  1. 1.Centro Universitario di OdontoiatriaUniversity of ParmaParmaItaly
  2. 2.Dipartimento di Medicina e ChirurgiaUniversity of ParmaParmaItaly
  3. 3.ISMAC-CNR, Institute for macromolecular studiesMilanoItaly
  4. 4.IMEM-CNRInstitute of Materials for Electronics and MagnetismParmaItaly
  5. 5.School of MedicineUniversity of GenoaGenoaItaly
  6. 6.IMEM-CNRInstitute of Materials for Electronics and MagnetismTrentoItaly

Personalised recommendations