Biofabrication of vessel-like structures with alginate di-aldehyde—gelatin (ADA-GEL) bioink

  • F. Ruther
  • T. Distler
  • A. R. BoccacciniEmail author
  • R. Detsch
S.I.: Biofabrication and Bioinks for Tissue Engineering Original Research
Part of the following topical collections:
  1. S.I.: Biofabrication and Bioinks for Tissue Engineering


One of the key challenges in the field of blood vessel engineering is the in vitro production of small and large diameter vessels. Considering that a combination of alginate di-aldehyde and gelatin (ADA-GEL) has been successfully applied for different biofabrication approaches, the aim of this study was to exploit ADA-GEL for the fabrication of vessel structures with diameters up to 4 mm. To explore plotting possibilities and to study the swelling behaviour, a library of vessel-like constructs with different diameters made from 2, 3 and 4% (w/v) alginate was created by using various hand-crafted double-needle extrusion systems. Vessel diameters were varied through changes of the double-needle core and outer diameters. A straightforward model for the production of vessel of different diameters from a variety of double-needle systems was established and vessel-constructs with diameters of up to 3.7 mm could be created. It was successfully demonstrated that an artificial vessel, consisting of an outer layer of 7.5% ADA50-GEL50 and an inner core of 3% gelatin, can support the proliferation and migration of an immobilized co-culture containing fibroblast (NHDF) and endothelial (HUVEC) cells. The openness and tightness of the hollow ADA-GEL structures were further confirmed by a dye injection test. Nanoindentation was performed to determine the Young’s modulus of the used materials. Cell vitality was proved after 1, 2 and 3 weeks of incubation. The results showed a nearly twofold increase of viable cells per week. Fluorescent images confirmed cell migration during the whole incubation time.



This work was supported by the German Research Foundation (DFG) within the collaborative research center TRR225 (project Nr. 326998133) (subprojects A01 and B06). Furthermore, this work was technically supported by Dr. Raminder Singh and PD Dr. Iwona Cicha from the Translational Research Center (TRC) of the University Medical Centre Erlangen. The authors would also like to thank Dr. T. Zehnder for his help with the used hydrogels and Ms. A. Grünewald for cell culturing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Langer R, Vacanti J. Tissue engineering. Science. 1993;260:920–6. Scholar
  2. 2.
    Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63:300–11. Scholar
  3. 3.
    WHO (2018). The top 10 causes of death: World Heal Organ. Accessed on 17 Jan 2018.
  4. 4.
    Cicha I, Detsch R, Singh R, Reakasame S, Alexiou C, Boccaccini AR. Biofabrication of vessel grafts based on natural hydrogels. Curr Opin Biomed Eng. 2017;2:83–89. Scholar
  5. 5.
    Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering. Regen Med. 2010;5:107–20. Scholar
  6. 6.
    Head SJ, Kieser TM, Falk V, Huysmans HA, Kappetein AP. Coronary artery bypass grafting: part 1—the evolution over the first 50 years. Eur Heart J. 2013;34:2862–72. Scholar
  7. 7.
    Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev. 2009;89:957–89. Scholar
  8. 8.
    Jani B. Ageing and vascular ageing. Postgrad Med J. 2006;82:357–62. Scholar
  9. 9.
    Dahl SLM, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y. et al. Readily available tissue-engineered vascular grafts. Sci Transl Med. 2011;3:68ra9–68ra9. Scholar
  10. 10.
    Anatomie Blutgefäße (2017). Accessed on 24 Oct 2017.
  11. 11.
    Aird WC. Phenotypic heterogeneity of the endothelium: I. structure, function, and mechanisms. Circ Res. 2007;100:158–73. Scholar
  12. 12.
    Aird WC. Phenotypic heterogeneity of the endothelium: II. representative vascular beds. Circ Res. 2007;100:174–90. Scholar
  13. 13.
    Nicolay N, Antwerpes F, Steudler U (2017). Tunica Adventitia. DocCheck. on 5 Sept 2017.
  14. 14.
    van den Berg F. Angewandte Physiologie: Band 1. Georg Thieme Verla; Stuttgart, Germany, 2003.Google Scholar
  15. 15.
    Kucukgul C, Ozler B, Karakas HE, Gozuacik D, Koc B. 3D hybrid bioprinting of macrovascular structures. Procedia Eng. 2013;59:183–92. Scholar
  16. 16.
    Singh R, Sarker B, Silva R, Detsch R, Dietel B, Alexiou C. et al. Evaluation of hydrogel matrices for vessel bioplotting: vascular cell growth and viability. J Biomed Mater Res Part A. 2016;104:577–85. Scholar
  17. 17.
    Jungst T, Smolan W, Schacht K. et al. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2015; Scholar
  18. 18.
    Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26. Scholar
  19. 19.
    Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33:3279–305. Scholar
  20. 20.
    Boanini E, Rubini K, Panzavolta S, Bigi A. Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomater. 2010;6:383–8. Scholar
  21. 21.
    Detsch R, Sarker B, Zehnder T, Frank G, Boccaccini AR. Advanced alginate-based hydrogels. Mater Today. 2015;18:590–1. Scholar
  22. 22.
    Yang J-S, Xie Y-J, He W. Research progress on chemical modification of alginate: a review. Carbohydr Polym. 2011;84:33–9. Scholar
  23. 23.
    Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-E-Noor F, Bertmer M. et al. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B. 2014;2:1470. Scholar
  24. 24.
    Boontheekul T, Kong H-J, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455–65. Scholar
  25. 25.
    Kong H. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials. 2003;24:4023–9. Scholar
  26. 26.
    Rowley Ja, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53. Scholar
  27. 27.
    Biswal D, Anupriya B, Uvanesh K, Anis A, Banerjee I, Pal K. Effect of mechanical and electrical behavior of gelatin hydrogels on drug release and cell proliferation. J Mech Behav Biomed Mater. 2015;53:174–86. Scholar
  28. 28.
    Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules. 2018;19:3–21. Scholar
  29. 29.
    Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Mater (Basel). 2013;6:1285–309. Scholar
  30. 30.
    Manju S, Muraleedharan CV, Rajeev A, Jayakrishnan A, Joseph R. Evaluation of alginate dialdehyde cross-linked gelatin hydrogel as a biodegradable sealant for polyester vascular graft. J Biomed Mater Res B Appl Biomater. 2011;98 B:139–49. Scholar
  31. 31.
    George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114:1–14. CrossRefGoogle Scholar
  32. 32.
    Nguyen T-P, Lee B-T. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. J Biomater Appl. 2012;27:311–21. Scholar
  33. 33.
    Zehnder T, Boccaccini AR, Detsch R. Biofabrication of a co-culture system in an osteoid-like hydrogel matrix. Biofabrication. 2017;9:025016. Scholar
  34. 34.
    Ivanovska J, Zehnder T, Lennert P, Sarker B, Boccaccini AR, Hartmann A. et al. Biofabrication of 3D alginate-based hydrogel for cancer research: comparison of cell spreading, viability, and adhesion characteristics of colorectal HCT116 tumor cells. Tissue Eng Part C Methods. 2016;22:708–15. Scholar
  35. 35.
    Zehnder T, Sarker B, Boccaccini AR, Detsch R. Evaluation of an alginate–gelatine crosslinked hydrogel for bioplotting. Biofabrication. 2015;7:25001. Scholar
  36. 36.
    Sarker B, Singh R, Silva R, Roether JA, Kaschta J, Detsch R. et al. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One. 2014;9:e107952. Scholar
  37. 37.
    Sarker B. advanced hydrogels concepts based on combinations of alginate, gelatin and bioactive glasses for tissue engineering. 2015. PhD thesis, Friedrich-Alexander University Erlangen-Nuremberg.Google Scholar
  38. 38.
    Luo Y, Lode A, Gelinsky M. Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthc Mater. 2013;2:777–83. Scholar
  39. 39.
    Cicha I, Goppelt-Struebe M, Muehlich S, Yilmaz A, Raaz D, Daniel WG. et al. Pharmacological inhibition of RhoA signaling prevents connective tissue growth factor induction in endothelial cells exposed to non-uniform shear stress. Atherosclerosis. 2008;196:136–45. Scholar
  40. 40.
    Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol. 2008;9:446–54. Scholar
  41. 41.
    Yu Y, Zhang Y, Martin Ja, Ozbolat IT. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng. 2013;135:91011. Scholar
  42. 42.
    Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5:326–33. Scholar
  43. 43.
    Cicha I, Singh R, Garlichs CD, Alexiou C. Nano-biomaterials for cardiovascular applications: clinical perspective. J Control Release. 2016;229:23–36. Scholar
  44. 44.
    Nair K, Gandhi M, Khalil S, Chang Yan K, Marcolongo M, Barbee K. et al. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4:1168–77. Scholar
  45. 45.
    Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8:35020. Scholar
  46. 46.
    Chang R, Nam J, Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A. 2008;14:41–48. Scholar
  47. 47.
    Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130:601–10. Scholar
  48. 48.
    Mih JD, Sharif AS, Liu F, Marinkovic A, Symer MM, Tschumperlin DJ. A multiwell platform for studying stiffness-dependent cell biology. PLoS One. 2011;6:e19929. Scholar
  49. 49.
    Saunders RL, Hammer Da. Assembly of human umbilical vein endothelial cells on compliant hydrogels. Cell Mol Bioeng. 2010;3:60–67. Scholar
  50. 50.
    Yeh Y-T, Hur SS, Chang J, Wang KC, Chiu JJ, Li YS, Chien S. Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS One. 2012;7:e46889. Scholar
  51. 51.
    Costa-Almeida R, Gomez-Lazaro M, Ramalho C, Granja PL, Soares R, Guerreiro SG. Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Eng Part A. 2015;21:1055–65. Scholar
  52. 52.
    Sorrell JM, Baber MA, Caplan AI. A self-assembled fibroblast-endothelial cell co-culture system that supports in vitro vasculogenesis by both human umbilical vein endothelial cells and human dermal microvascular endothelial cells. Cells Tissues Organs. 2007;186:157–68. Scholar
  53. 53.
    Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M. et al. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials. 2010;31:3903–9. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of BiomaterialsDepartment of Materials Science and Engineering, University of Erlangen-NurembergErlangenGermany

Personalised recommendations