Advertisement

Defragmentation of lysozyme derived Amyloid β fibril using Biocompatible Magnetic fluid

  • Nidhi P. Parikh
  • Kinnari H. Parekh
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization

Abstract

We present here a modulating effect on lysozyme derived Amyloid β fibrils by aqueous magnetic fluid. This non-conventional approach of treatment of lysozyme derived Amyloid β fibrils showed lysing of Amyloid fibrils to its secondary structures which can be seen using optical microscope and scanning electron microscopic image. The size of lysozyme derived amyloid fibrils before and after treatment was measured using dynamic light scattering technique. The mechanism of defragmentation of lysozyme derived Amyloid β fibrils by magnetic fluid is explained. This is a first report to identify the secondary structure of protein using Fourier Transform Infrared (FTIR) and Circular Dichroism (CD) spectra after lysing. The cyto-toxicity study of this magnetic fluid on neuronal (SH-SY5Y) and non-neuronal (NRK) cell lines shows non-toxicity up to a concentration of 250 μg/mL. The study indicates a novel and unique complementary approach to treat the amyloidogenic brain diseases.

Notes

Acknowledgements

Authors would like to thank DST, Govt. of India for providing financial support to NP under technology development project no. 161-G and CHARUSAT for providing experimental facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650CrossRefGoogle Scholar
  2. 2.
    Yohan D, Chithrani BD. Applications of nanoparticles in nanomedicine. J Biomed nanotech. 2014;10:2371CrossRefGoogle Scholar
  3. 3.
    Kim BY, Rutka JT, Chan WC. Nanomedicine. New Engl J Med. 2010;363:2434CrossRefGoogle Scholar
  4. 4.
    El-Desouki RAKM. New insights on Alzheimer’s disease. J. Microscopy and Ultrastructure. 2014;2:57CrossRefGoogle Scholar
  5. 5.
    Kontush A, Berndt C, Weber W, Akopyan V, Arlt S, Schippling S. et al. Amyloid-β is anantioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med. 2001;30:119.1CrossRefGoogle Scholar
  6. 6.
    Reiman EM. Alzheimer's disease: Attack on amyloid-β protein. Nature. 2016;537:36CrossRefGoogle Scholar
  7. 7.
    Sadigh-Eteghad S, Talebi M, Farhoudi M, Golzari SEJ, Sabermarouf B, Mahmoudi J. β-Amyloidexhibits antagonistic effects on alpha 7 nicotinic acetylcholine receptors in orchestrated manner. J Med Hypotheses Ideas. 2014;8:49CrossRefGoogle Scholar
  8. 8.
    Koneracká M, Antošová A, Závišová V, Lancz G, Gažová Z, Šipošová K. et al. Characterizationof Fe3O4 magnetic nanoparticles modified with dextran and investigation of their interaction with protein amyloid aggregates. Acta Phys Pol-Ser A General Phys. 2010;118:983CrossRefGoogle Scholar
  9. 9.
    Skaat H, Belfort G, Margel S. Synthesis and characterization of fluorinated magnetic core–shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology. 2009;20:225106CrossRefGoogle Scholar
  10. 10.
    Bellova A, Bystrenova E, Koneracka M, Kopcansky P, Valle F, Tomasovicova N. et al. Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology. 2010;21:065103CrossRefGoogle Scholar
  11. 11.
    Koneracká M, Antošová A, Závišová V, Gažová Z, Lancz G, Juríková A. et al. Preparation and characterization of albumin containing magnetic fluid as potential drug for amyloid diseases treatment. Phys Proceedia. 2010;9:254CrossRefGoogle Scholar
  12. 12.
    Antosova A, Siposova K, Koneracka M, Zavisova V, Daxnerova Z, Vavra I. et al. Magnetic fluid—a novel approach to treat amyloid-related diseases. Phys Proceedia. 2010;9:262CrossRefGoogle Scholar
  13. 13.
    Skaat H, Chen R, Grinberg I, Margel S. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation. Biomacromolecules. 2012;13:2662CrossRefGoogle Scholar
  14. 14.
    Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E. et al. Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J Ame Chem Soc. 2008;130:15437CrossRefGoogle Scholar
  15. 15.
    Cabaleiro-Lago C, Lynch I, Dawson KA, Linse S. Inhibition of IAPP and IAPP (20− 29) fibrillation by polymeric nanoparticles. Langmuir. 2009;26:3453CrossRefGoogle Scholar
  16. 16.
    Shaw CP, Middleton DA, Volk M, Lévy R. Amyloid-derived peptide forms self-assembled monolayers on gold nanoparticle with a curvature-dependent β-sheet structure. ACS nano. 2012;6:1416CrossRefGoogle Scholar
  17. 17.
    Cabaleiro-Lago C, Szczepankiewicz O, Linse S. The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate. Langmuir. 2012;28:1852CrossRefGoogle Scholar
  18. 18.
    Wu WH, Sun X, Yu YP, Hu J, Zhao L, Liu Q. et al. TiO2 nanoparticles promote beta-amyloid fibrillation in vitro. Biochem Biophys Res Comm. 2008;373:315CrossRefGoogle Scholar
  19. 19.
    Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E. et al. Proceedings of the National Academy of Sciences. Proc Natl Acad Sci.2007;104:8691CrossRefGoogle Scholar
  20. 20.
    Parikh N, Parekh K. Technique to optimize magnetic response of Gelatin coated magnetic nanoparticles. J Mater Sci Mater Med. 2015;26:7–1CrossRefGoogle Scholar
  21. 21.
    Nevskaya NA, Chirgadze YN. Infrared spectra and resonance interactions of amide-I and II vibration of alpha-helix. Biopolymers. 1976;15:637CrossRefGoogle Scholar
  22. 22.
    Martin SR, Bayley PM.Calcium-Bind Protein Protoc: Methods Tech. Springer Publications, 2002;2:43Google Scholar
  23. 23.
    Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1:2876CrossRefGoogle Scholar
  24. 24.
    Gopal R, Park JS, Seo CH, Park Y. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int J Mol Sci. 2012;13:3229CrossRefGoogle Scholar
  25. 25.
    Gaihre B, Khil MS, Kim HY. In vitro anticancer activity of doxorubicin-loaded gelatin-coated magnetic iron oxide nanoparticles. J Microencapsul. 2011;28:286CrossRefGoogle Scholar
  26. 26.
    Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109:256CrossRefGoogle Scholar
  27. 27.
    Ziv O, Avtalion RR, Margel S. Immunogenicity of bioactive magnetic nanoparticles: Natural and acquired antibodies. J Biomed Mater Res Part A. 2008;85:1011CrossRefGoogle Scholar
  28. 28.
    Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K. et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci. 2010;107:7710CrossRefGoogle Scholar
  29. 29.
    Fei L, Perrett S. Effect of nanoparticles on protein folding and fibrillogenesis. Int J Mol Sci. 2009;10:646CrossRefGoogle Scholar
  30. 30.
    Joachim E, Kim ID, Jin Y, Kim KK, Lee JK, Choi H. Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model. Drug Deliv Transl Res. 2014;395:4.5–6Google Scholar
  31. 31.
    Rocha S, Thünemann AF, do Carmo Pereira M, Coelho M, Möhwald H, Brezesinski G. Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem. 2008;137:35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dr. K C Patel R & D CenterCharotar University of Science & TechnologyDist. AnandIndia

Personalised recommendations