Advertisement

In vitro evaluation of a multispecies oral biofilm over antibacterial coated titanium surfaces

  • Javi Vilarrasa
  • Luis M Delgado
  • Marta Galofré
  • Gerard Àlvarez
  • Deborah Violant
  • José María Manero
  • Vanessa Blanc
  • F. Javier Gil
  • José Nart
Biocompatibility Studies Original Research
  • 129 Downloads
Part of the following topical collections:
  1. Biocompatibility Studies

Abstract

Peri-implantitis is an infectious disease that affects the supporting soft and hard tissues around dental implants and its prevalence is increasing considerably. The development of antibacterial strategies, such as titanium antibacterial-coated surfaces, may be a promising strategy to prevent the onset and progression of peri-implantitis. The aim of this study was to quantify the biofilm adhesion and bacterial cell viability over titanium disc with or without antibacterial surface treatment. Five bacterial strains were used to develop a multispecies oral biofilm. The selected species represent initial (Streptococcus oralis and Actinomyces viscosus), early (Veillonella parvula), secondary (Fusobacterium nucleatum) and late (Porphyromonas gingivalis) colonizers. Bacteria were sequentially inoculated over seven different types of titanium surfaces, combining different roughness level and antibacterial coatings: silver nanoparticles and TESPSA silanization. Biofilm formation, cellular viability and bacterial quantification over each surface were analyzed using scanning electron microscopy, confocal microscopy and real time PCR. Biofilm formation over titanium surfaces with different bacterial morphologies could be observed. TESPSA was able to significantly reduce the cellular viability when compared to all the surfaces (p < 0.05). Silver deposition on titanium surface did not show improved results in terms of biofilm adhesion and cellular viability when compared to its corresponding non-coated surface. The total amount of bacterial biofilm did not significantly differ between groups (p > 0.05). TESPSA was able to reduce biofilm adhesion and cellular viability. However, silver deposition on titanium surface seemed not to confer these antibacterial properties.

Notes

Acknowledgements

Dr Nart, Dr Delgado and Mr Vilarrasa from UIC Barcelona would also like to acknowledge the Dentaid Research Centre (Dentaid S.L.) for the technical support and the access to their facilities. The work was supported by Klockner Implant System.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981;10:387–416.CrossRefGoogle Scholar
  2. 2.
    Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1:11–25.Google Scholar
  3. 3.
    Lindquist LW, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res. 1996;7:329–36.CrossRefGoogle Scholar
  4. 4.
    Buser D, Chappuis V, Bornstein MM, Wittneben JG, Frei M, Belser UC. Long-term stability of contour augmentation with early implant placement following single tooth extraction in the esthetic zone: a prospective, cross-sectional study in 41 patients with a 5- to 9-year follow-up. J Periodontol. 2013;84:1517–27.Google Scholar
  5. 5.
    Leonhardt A, Gröndahl K, Bergström C, Lekholm U. Long-term follow-up of osseointegrated titanium implants using clinical, radiographic and microbiological parameters. Clin Oral Implants Res. 2002;13:127–32.CrossRefGoogle Scholar
  6. 6.
    Lindhe J, Meyle J. Periodontology GDoEWo. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol. 2008;35(8 Suppl):282–5.CrossRefGoogle Scholar
  7. 7.
    Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42(Suppl 16):S158–71.CrossRefGoogle Scholar
  8. 8.
    Mombelli A, van Oosten MA, Schurch E, Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol. 1987;2:145–51.CrossRefGoogle Scholar
  9. 9.
    Sanz-Martin I, Doolittle-Hall J, Teles RP, Patel M, Belibasakis GN, Hämmerle CH. et al. Exploring the microbiome of healthy and diseased peri-implant sites using Illumina Sequencing. J Clin Periodontol. 2017;44(12):1274–1284.CrossRefGoogle Scholar
  10. 10.
    Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol 2000. 2010;53:167–81.CrossRefGoogle Scholar
  11. 11.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–8.CrossRefGoogle Scholar
  12. 12.
    Godoy-Gallardo M, Guillem-Marti J, Sevilla P, Manero JM, Gil FJ, Rodriguez D. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Mater Sci Eng C Mater Biol Appl. 2016;59:524–32.CrossRefGoogle Scholar
  13. 13.
    Godoy-Gallardo M, Wang Z, Shen Y, Manero JM, Gil FJ, Rodriguez D, et al. Antibacterial coatings on titanium surfaces: a comparison study between in vitro single-species and multispecies biofilm. ACS Appl Mater Interfaces. 2015;7:5992–6001.CrossRefGoogle Scholar
  14. 14.
    Pegueroles M, Aparicio C, Bosio M, Engel E, Gil FJ, Planell JA, et al. Spatial organization of osteoblast fibronectin matrix on titanium surfaces: effects of roughness, chemical heterogeneity and surface energy. Acta Biomater. 2010;6:291–301.CrossRefGoogle Scholar
  15. 15.
    Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials. 2003;24:263–73.CrossRefGoogle Scholar
  16. 16.
    Violant D, Galofré M, Nart J, Teles RP. In vitro evaluation of a multispecies oral biofilm on different implant surfaces. Biomed Mater. 2014;9:035007.CrossRefGoogle Scholar
  17. 17.
    Alvarez G, González M, Isabal S, Blanc V, León R. Method to quantify live and dead cells in multi-species oral biofilm by real-time PCR with propidium monoazide. AMB Express. 2013;3:1.CrossRefGoogle Scholar
  18. 18.
    Wu-Yuan CD, Eganhouse KJ, Keller JC, Walters KS. Oral bacterial attachment to titanium surfaces: a scanning electron microscopy study. J Oral Implantol. 1995;21:207–13.Google Scholar
  19. 19.
    Drake DR, Paul J, Keller JC. Primary bacterial colonization of implant surfaces. Int J Oral Maxillofac Implants. 1999;14:226–32.Google Scholar
  20. 20.
    Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17(Suppl 2):68–81.CrossRefGoogle Scholar
  21. 21.
    Bürgers R, Gerlach T, Hahnel S, Schwarz F, Handel G, Gosau M. In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin Oral Implants Res. 2010;21:156–64.CrossRefGoogle Scholar
  22. 22.
    Chen C-P, Jing R-Y, Wickstrom E. Covalent Attachment of Daptomycin to Ti6Al4V Alloy Surfaces by a Thioether Linkage to Inhibit Colonization by Staphylococcus aureus. ACS Omega. 2017;2:1645–52.CrossRefGoogle Scholar
  23. 23.
    Mesleh MF, Rajaratnam P, Conrad M, Chandrasekaran V, Liu CM, Pandya BA, et al. Targeting bacterial cell wall peptidoglycan synthesis by inhibition of glycosyltransferase activity. Chem Biol Drug Des. 2016;87:190–9.CrossRefGoogle Scholar
  24. 24.
    Hurdle JG, O’Neill AJ, Chopra I, Lee RE. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol. 2011;9:62–75.CrossRefGoogle Scholar
  25. 25.
    Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91:470–80.CrossRefGoogle Scholar
  26. 26.
    Godoy-Gallardo M, Rodríguez-Hernández AG, Delgado LM, Manero JM, Javier Gil F, Rodríguez D. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius. Clin Oral Implants Res. 2015;26:1170–9.CrossRefGoogle Scholar
  27. 27.
    Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66:486–505. table of contentsCrossRefGoogle Scholar
  28. 28.
    Sánchez MC, Llama-Palacios A, Blanc V, León R, Herrera D, Sanz M. Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota. J Periodontal Res. 2011;46:252–60.CrossRefGoogle Scholar
  29. 29.
    Sánchez MC, Llama-Palacios A, Fernández E, Figuero E, Marín MJ, León R, et al. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater. 2014;30:1161–71.CrossRefGoogle Scholar
  30. 30.
    Godoy-Gallardo M, Manzanares-Céspedes MC, Sevilla P, Nart J, Manzanares N, Manero JM. et al. Evaluation of bone loss in antibacterial coated dental implants: an experimental study in dogs. Mater Sci Eng C Mater Biol Appl.2016;69:538–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Periodontology Faculty of DentistryUniversitat Internacional de CatalunyaBarcelonaSpain
  2. 2.Bioengineering Institute of TechnologyUniversitat Internacional de CatalunyaBarcelonaSpain
  3. 3.Department of MicrobiologyDentaid Research CenterBarcelonaSpain
  4. 4.Faculty of DentistryUniversitat Internacional de CatalunyBarcelonaSpain
  5. 5.Biomaterials, Biomechanics and Tissue Engineering Group (BBT)Department of Materials Science and Metallurgical Engineering Technical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations