Advertisement

Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications

  • Qaisar Nawaz
  • Muhammad Atiq Ur Rehman
  • Andreas Burkovski
  • Jochen Schmidt
  • Ana M. Beltrán
  • Ameen Shahid
  • Nina K. Alber
  • Wolfgang Peukert
  • Aldo R. Boccaccini
Special Issue: ESB 2017 Original Research
  • 246 Downloads
Part of the following topical collections:
  1. Special Issue: ESB 2017

Abstract

Mesoporous bioactive glass (BG) nanoparticles based in the system: SiO2–P2O5–CaO–MnO were synthesized via a modified Stöber process at various concentrations of Mn (0–7 mol %). The synthesized manganese-doped BG nanoparticles were characterized in terms of morphology, composition, in vitro bioactivity and antibacterial activity. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis confirmed that the particles had spherical morphology (mean particle size: 110 nm) with disordered mesoporous structure. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of Mn, Ca, Si and P in the synthesized Mn-doped BG particles. Moreover, X-ray diffraction (XRD) analysis showed that Mn has been incorporated in the amorphous silica network (bioactive glass). Moreover, it was found that manganese-doped BG particles form apatite crystals upon immersion in simulated body fluid (SBF). Inductively coupled plasma atomic emission spectroscopy (ICP-OES) measurements confirmed that Mn is released in a sustained manner, which provided antibacterial effect against Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus. The results indicate that the incorporation of Mn in the bioactive glass network is an effective strategy to develop novel multifunctional BG nanoparticles for bone tissue engineering.

Notes

Acknowledgements

QN would like to thank Higher Education Commission (HEC) of Pakistan for granting a scholarship. Authors would like to thank the TEM facilities of CITIUS-US. TEM analyses have been funded by Grant P2017/837 from the University of Seville (Spain).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Nicolini V, Malavasi G, Menabue L, Lusvardi G, Benedetti F, Valeri S, Luches P. Cerium-doped bioactive 45S5 glasses: spectroscopic, redox, bioactivity and biocatalytic properties. J Mater Sci. 2017;52:8845–57.Google Scholar
  2. 2.
    Eqtesadi S, Motealleh A, Miranda P, Pajares A, Lemos A, Ferreira JMF. Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. J Eur Ceram Soc. 2014;34:107–18.CrossRefGoogle Scholar
  3. 3.
    Gerhardt L-C, Boccaccini AR. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010;3:3867–910.CrossRefGoogle Scholar
  4. 4.
    Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: State of the art and future trends. Macromol Biosci. 2004;4:743–65.CrossRefGoogle Scholar
  5. 5.
    Hench LL, hompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2014;7:S379–91.CrossRefGoogle Scholar
  6. 6.
    Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17:967–78.CrossRefGoogle Scholar
  7. 7.
    Jones JR, Review of bioactive glass: From Hench to hybrids. Acta Biomater. 2015;23:S53–82.CrossRefGoogle Scholar
  8. 8.
    Miguez-Pacheco V, Hench LL, Boccaccini AR. Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1–15.CrossRefGoogle Scholar
  9. 9.
    Schröder HC, Wang XH, Wiens M, Diehl-Seifert B, Kropf K, Schloßmacher U, Müller WEG, Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): Inhibition of osteoclast gro wth and differentiation. J Cell Biochem. 2012;113:3197–206..Google Scholar
  10. 10.
    Shie MY, Ding SJ, Chang HC. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011;7:2604–14.CrossRefGoogle Scholar
  11. 11.
    Haro Durand LA, Vargas GE, Romero NM, Vera-Mesones R, Porto-López JM, Boccaccini AR, Zago MP, Baldi A, Gorustovich A. Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J Mater Chem B. 2015;3:1142–8.CrossRefGoogle Scholar
  12. 12.
    Balasubramanian P, Hupa L, Jokic B, Detsch R, Grünewald A, Boccaccini AR, Angiogenic potential of boron-containing bioactive glasses: in vitro study. J Mater Sci. 2017;52:8785–92.Google Scholar
  13. 13.
    Hench LL, Chronology of Bioactive Glass Development and Clinical Applications. New J Glas Ceram. 2013;3:67–73.CrossRefGoogle Scholar
  14. 14.
    Qazi TH, Hafeez S, Schmidt J, Duda GN, Boccaccini AR, Lippens E. Comparison of the effects of 45S5 and 1393 bioactive glass microparticles on hMSC behavior. J Biomed Mater Res-Part A. 2017;105:2772–82.CrossRefGoogle Scholar
  15. 15.
    Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.Google Scholar
  16. 16.
    Salinas AJ, Shruti S, Malavasi G, Menabue L, Vallet-Regí M. Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. 2011;7:3452–8.CrossRefGoogle Scholar
  17. 17.
    Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012;33:2076–85.Google Scholar
  18. 18.
    Zheng K, Dai X, Lu M, Huser N, Taccardi N, Boccaccini AR. Synthesis of copper-containing bioactive glass nanoparticles using a modified Stober method for biomedical applications. Colloids Surf B Biointerfaces. 2017;150:159–67.CrossRefGoogle Scholar
  19. 19.
    Wu C, Zhou Y, Lin C, Chang J, Xiao Y. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater. 2012;8:3805–15.Google Scholar
  20. 20.
    Kavitha RJ, Subha B, Shanmugam S, Ravichandran K. Synthesis and Invitro Characterisation of Lithium Doped Bioactive Glass through Quick Alkali Sol - Gel Method. Int J Innov Res Sci Eng. 2014;2:2347–3207.Google Scholar
  21. 21.
    Miguez-Pacheco V, de Ligny D, Schmidt J, Detsch R, Boccaccini AR. Development and characterization of niobium-releasing silicate bioactive glasses for tissue engineering applications. J Eur Ceram Soc. 2017;38:871–76.CrossRefGoogle Scholar
  22. 22.
    Wu C, Miron R, Sculean A, Kaskel S, Doert T, Schulze R, Zhang Y. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials. 2011;32:7068–78.CrossRefGoogle Scholar
  23. 23.
    Balasubramanian P, Strobel LA, Kneser U, Boccaccini AR. Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications. Biomed Glas. 2015;1:51–69.Google Scholar
  24. 24.
    Sopyan I, Ramesh S, Nawawi NA, Tampieri A, Sprio S. Effects of manganese doping on properties of sol-gel derived biphasic calcium phosphate ceramics. Ceram Int. 2011;37:3703–15.CrossRefGoogle Scholar
  25. 25.
    Lüthen F, Bulnheim U, Müller PD, Rychly J, Jesswein H, Nebe JGB. Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol Eng. 2007;24:531–6.Google Scholar
  26. 26.
    Srivastava AK, Pyare R, Singh SP. In vitro bioactivity and physical–mechanical properties of MnO2 substituted 45S5 bioactive glasses and glass-ceramics. J Biomater Tissue Eng. 2012;2:249–58.Google Scholar
  27. 27.
    Fujitani W, Hamada Y, Kawaguchi N, Mori S, Daito K, Uchinaka A, Matsumoto T, Kojima Y, Daito M, Nakano T, Matsuura N. Synthesis of Hydroxyapatite Contining Manganese and Its Evaluation of Biocompatibility. Nano Biomed. 2010;2:37–46.Google Scholar
  28. 28.
    Miola M, Brovarone CV, Maina G, Rossi F, Bergandi L, Ghigo D, Saracino S, Maggiora M, Canuto RA, Muzio G, Vernè E. In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater Sci Eng C. 2014;38:107–18.Google Scholar
  29. 29.
    Barrioni BR, Oliveira AC, de Fatima Leite M, de Magalhaes Pereira M. Sol-gel-derived manganese-releasing bioactive glass as a therapeutic approach for bone tissue engineering. J Mater Sci. 2017;52:8904–27.Google Scholar
  30. 30.
    Creaven BS, Egan DA, Karcz D, Kavanagh K, McCann M, Mahon M, Noble A, Thati B, Walsh M. Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid (cdoaH2) and 4-methylcoumarin-6,7-dioxyacetic acid (4-MecdoaH2): X-ray crystal structures of [Cu(cdoa)(phen)2] · 8.8H2O and [Cu(4-Mecdoa)(phen)2] · 13H2O (phen = 1,10-phenanthroline). J Inorg Biochem. 2007;101:1108–19.Google Scholar
  31. 31.
    Sharma N, Jandaik S, Kumar S, Chitkara M, Sandhu IS. Synthesis, characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles. J Exp Nanosci. 2016;11:54–71.CrossRefGoogle Scholar
  32. 32.
    Dorkov P, Pantcheva IN, Sheldrick WS, Mayer-Figge H, Petrova R. Mitewa M. Synthesis, structure and antimicrobial activity of manganese(II) and cobalt(II) complexes of the polyether ionophore antibiotic Sodium Monensin A. J Inorg Biochem. 2008;102:26–32.CrossRefGoogle Scholar
  33. 33.
    Philippart A, Gómez-Cerezo N, Arcos D, Salinas AJ, Boccardi E, Vallet-Regi M, Boccaccini AR. Novel ion-doped mesoporous glasses for bone tissue engineering: Study of their structural characteristics influenced by the presence of phosphorous oxide. J Non Cryst Solids. 2017;455:90–7.Google Scholar
  34. 34.
    Erol-Taygun M, Zheng K, Boccaccini AR. Nanoscale Bioactive Glasses in Medical Applications. Int J Appl Glas Sci. 2013;4:136–48.Google Scholar
  35. 35.
    Zhao L, Yan X, Zhou X, Zhou L, Wang H, Tang J, Yu C. Mesoporous bioactive glasses for controlled drug release. Microporous Mesoporous Mater. 2008;109:210–5.CrossRefGoogle Scholar
  36. 36.
    Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem-Int Ed. 2004;43:5980–4.Google Scholar
  37. 37.
    Tang F, Li L, Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24:1504–34.Google Scholar
  38. 38.
    Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system. J Control Release. 2006;110:522–30.Google Scholar
  39. 39.
    Gargiulo N, Cusano AM, Causa F, Caputo D, Netti PA. Silver-containing mesoporous bioactive glass with improved antibacterial properties. J Mater Sci Mater Med. 2013;24:2129–35.Google Scholar
  40. 40.
    Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34:422–33.Google Scholar
  41. 41.
    Zhu Y, Li X, Yang J, Wang S, Gao H, Hanagata N. Composition-structure-property relationships of the CaO-MxOy-SiO2-P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds. J Mater Chem. 2011;21:9208–18.CrossRefGoogle Scholar
  42. 42.
    Wu C, Chang J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release. 2014;193:282–95.CrossRefGoogle Scholar
  43. 43.
    Zheng K, Taccardi N, Beltrán AM, Sui B, Zhou T, Marthala VRR, Hartmann M, Boccaccini AR. Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles. RSC Adv. 2016;6:95101–11.Google Scholar
  44. 44.
    Kozon D, Zheng K, Boccardi E, Liu Y, Liverani L, Boccaccini AR. Synthesis of monodispersed Ag-doped bioactive glass nanoparticles via surface modification. Materials. 2016;9:225–32.Google Scholar
  45. 45.
    Ye J, He J, Wang C, Yao K, Gou Z. Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity. Biotechnol Lett. 2014;36:961–8.Google Scholar
  46. 46.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27:2907–15.Google Scholar
  47. 47.
    Wumes SE, Smith JA, Struhl K. Culinary Biol. 1990;61:17-18.Google Scholar
  48. 48.
    Ur Rehman MA, Ferraris S, Goldmann WH, Perero S, Bastan FE, Nawaz Q, Di Confiengo GG, Ferraris M, Boccaccini AR. Antibacterial and Bioactive Coatings Based on RF Co-sputtering of Silver Nanocluster-silica Coatings on PEEK/ bioactive Glass Layers Obtained by Electrophoretic Deposition. ACS Appl Mater Interfaces. 2017;9:32489–97.Google Scholar
  49. 49.
    Pishbin F, Mouriño V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater. 2013;9:7469–79.Google Scholar
  50. 50.
    Stähli C, James-Bhasin M, Hoppe A, Boccaccini AR, Nazhat SN. Effect of ion release from Cu-doped 45S5 Bioglass on 3D endothelial cell morphogenesis. Acta Biomater. 2015;19:15–22.Google Scholar
  51. 51.
    Masalov VM, Sukhinina NS, Kudrenko EA, Emelchenko GA. Mechanism of formation and nanostructure of Stöber silica particles. Nanotechnology. 2011;22:275718–26.Google Scholar
  52. 52.
    Tsigkou O, Labbaf S, Stevens MM, Porter AE, Jones JR. Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv Healthc Mater. 2014;3:115–25.Google Scholar
  53. 53.
    Bari A, Bloise N, Fiorilli S, Novajra G, Vallet-Regí M, Bruni G, Torres-Pardo A, González-Calbet JM, Visai L, Vitale-Brovarone C. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater. 2017;55:493–504.Google Scholar
  54. 54.
    Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.Google Scholar
  55. 55.
    Bantz C, Koshkina O, Lang T, Galla HJ, Kirkpatrick CJ, Stauber RH, Maskos M. Beilstein. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. J Nanotechnol. 2014;5:1774–86.Google Scholar
  56. 56.
    Wu C, Fan W, Chang J. Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J Mater Chem B. 2013;1:2710.Google Scholar
  57. 57.
    Courrol LC, de Oliveira Silva FR, Gomes L. A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf A Physicochem Eng Asp. 2007;305:54–7.Google Scholar
  58. 58.
    Schumacher M, Reither L, Thomas J, Kampschulte M, Gbureck U, Lode A, Gelinsky M. Calcium phosphate bone cement/mesoporous bioactive glass composites for controlled growth factor delivery. Biomater Sci. 2017;5:578–88.Google Scholar
  59. 59.
    Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G. Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett. 2006;60:3752–7.Google Scholar
  60. 60.
    Hoppe A, Meszaros R, Stähli C, Romeis S, Schmidt J, Peukert W, Marelli B, Nazhat SN, Wondraczek L, Lao J, Jallot E, Boccaccini AR. In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. J Mater Chem B. 2013;1:5659–74.Google Scholar
  61. 61.
    Bejarano J, Caviedes P, Palza H. Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed Mater. 2015;10:25001–13.Google Scholar
  62. 62.
    de Oliveira AAR, de Carvalho BB, Mansur HS, de Magalhães M. Pereira. Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: Engineering the morphology and size of sonogels via a poly (ethylene glycol) dispersing agent. Mater Lett. 2014;133:44–8.Google Scholar
  63. 63.
    Pishbin F, Mourino V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces. 2014;6:8796–806.Google Scholar
  64. 64.
    Atiq M, Rehman U, Bastan FE, Nawaz Q, Boccaccini AR. Electrophoretic deposition of lawsone loaded nanoscale silicate glass / chitosan composite on PEEK / BG layers. Electrochem Soc Tras. 2018;82:45–50.Google Scholar
  65. 65.
    Zheng K, Boccaccini AR, Sol-gel processing of bioactive glass nanoparticles. Adv Colloid Interface Sci. 2017;249:363–73. https://doi.org/10.1016/j.cis.2017.03.008.CrossRefGoogle Scholar
  66. 66.
    Kaya S, Cresswell M, Boccaccini AR. Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications. Mater Sci Eng C. 2018;83:99–107.Google Scholar
  67. 67.
    Ciapetti G, Savarino L, Miola M, Verné E, Vitale-Brovaron C,Baldini N. In vitro testing of manganese-doped bioglasses to stimulate osteoblast behaviour. Dental Materials. 2014;30:e166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qaisar Nawaz
    • 1
  • Muhammad Atiq Ur Rehman
    • 1
  • Andreas Burkovski
    • 2
  • Jochen Schmidt
    • 3
  • Ana M. Beltrán
    • 4
  • Ameen Shahid
    • 5
  • Nina K. Alber
    • 2
  • Wolfgang Peukert
    • 3
  • Aldo R. Boccaccini
    • 1
  1. 1.Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Microbiology DivisionUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Institute of Particle TechnologyUniversity of Erlangen-NurembergErlangenGermany
  4. 4.Department of Materials Science and EngineeringUniversity of SevilleSevilleSpain
  5. 5.Institute of Chemical Reaction EngineeringUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations