Glass Ceramic CAD/CAM crowns and severely altered posterior teeth: a three levels study

  • Michel Fages
  • Stephane Corn
  • Pierre Slangen
  • Jacques Raynal
  • Patrick Ienny
  • Kinga Turzo
  • Frederic Cuisinier
  • Jean-Cédric Durand
Part of the following topical collections:
  1. S.I.: Biomaterial-Tissue Interaction in Humans


For many practitioners, longevity of full glass ceramic crowns in the posterior area, molars and premolars, remains a real challenge. The purpose of this article is to identify and evaluate the parameters that can significantly influence their resistance when preparing a tooth. The analysis proposed in this article relies on interrelated studies conducted at three levels: in vitro (mechanical tests), in silico (finite elements simulations) and in vivo (clinical survival rates). The in vitro and the in silico studies proved that an appropriate variation of the geometric design of the preparations enables to increase up to 80% the mechanical strength of ceramic reconstructions. The in vivo clinical study of CAD/CAM full ceramic crowns was performed in accordance with the principles stated within the in vitro and the in silico studies and provided a 98.97% success rate over a 6 years period. The variations of geometric design parameters for dental preparation allows for reconstructions with a mechanical breaking up to 80% higher than that of a non-appropriate combination. These results are confirmed in clinical practice.

Graphical Abstract

Open image in new window


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Simonsen RJ. Conservation of tooth structure in restorative dentistry. Quintessence Int.1985;16:15–24.Google Scholar
  2. 2.
    Simonsen RJ. The preventive resin restoration: a minimally invasive, non metallic restoration. Compendium. 1987;8:428–32.Google Scholar
  3. 3.
    Goodacre CJ, Campagni WV, Aquilino SA. Tooth preparations for complete crowns: an art form based on scientific principles. J Prosthet Dent. 2001;85:363–76.CrossRefGoogle Scholar
  4. 4.
    Dawson AS, Cardaci SC. Endodontics versus implantology: to extirpate or integrate? Aust Endod J. 2006;32:57–63.CrossRefGoogle Scholar
  5. 5.
    McCrea SJ. Advanced peri-implantitis cases with radical surgical treatment. J Periodontal Implant Sci. 2014;44:39–47.CrossRefGoogle Scholar
  6. 6.
    Mante FK, Ozer F, Walter R, Atlas AM, Saleh N, Dietschi D, et al. The current state of adhesive dentistry: a guide for clinical practice. Compend Contin Educ Dent. 2013;34:2–8.Google Scholar
  7. 7.
    Magne P, Douglas WH. Rationalization of esthetic restorative dentistry based on biomimetics. J Esthet Dent. 1999;11:5–15.CrossRefGoogle Scholar
  8. 8.
    Bazos P, Magne P. Bio-Emulation: biomimetically emulating nature utilizing a histoanatomic approach; visual synthesis. Int J Esthet Dent. 2014;9:330–52.Google Scholar
  9. 9.
    Harkness JM. An idea man. Otto Herbert Schmitt. IEEE Eng Med Biol Mag. 2004;23(6):20–41.Google Scholar
  10. 10.
    Julien V, Bogatyreva O, Bogatyrev N, Bowyer A, Pahl A-K. Biomimetics: its practice and theory. J R Soc Interface. 2006;3:471–82.CrossRefGoogle Scholar
  11. 11.
    Bazos P, Magne P. Bio-Emulation: biomimetically emulating nature utilizing a histoanatomic approach; visual syntesis. Int J Esthet Dent. 2014;9(3):330–52.Google Scholar
  12. 12.
    Barak MM, Geiger S, Chattah NLT, Shahar R, Weiner S. Enamel dictates whole tooth deformation: a finite element model study validated by a metrology method. J Struct Biol. 2009;168:511–20.CrossRefGoogle Scholar
  13. 13.
    Zaslanski P, Friesem AA, Weiner S. Structure and mechanical properties of the softzone separating bulk dentin and enamel in crowns of human teeth: insight into tooth function. J Struct Biol. 2006;153:188–99.CrossRefGoogle Scholar
  14. 14.
    Baroudi K, Ibraheem SN. Assessment of chair-side computer-aided design and computer-aided manufacturing restorations: A review of the literature. J Int Oral Health. 2015;7:96–104.Google Scholar
  15. 15.
    Burke FJ, Qualtrough AJ, Hale RW. The dentin-bonded ceramic crown: an ideal restoration? Br Dent J. 1995;179:58–63.CrossRefGoogle Scholar
  16. 16.
    Fages M, Slangen P, Raynal J, Corn S, Turzo K, Margerit J, et al. Comparative mechanical behavior of dentin enamel and dentin ceramic junctions assessed by speckle interferometry (SI). Dent Mater.. 2012;28:229–38.CrossRefGoogle Scholar
  17. 17.
    El-Mowafy O, Brochu JF. Longevity and clinical performance of IPS- Empress ceramic restorations-a literature review. J Can Dent Assoc. 2002;68:233–7.Google Scholar
  18. 18.
    Zahran M, El-Mowafy O, Tam L, Watson PA, Finer Y. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/ CAM technolog. J Prosthodont. 2008;17:370–7.CrossRefGoogle Scholar
  19. 19.
    Friedlander LD, Munoz CA, Goodacre CJ, Doyle MG, Moore BK. The effect of tooth preparation design on the breaking strength of Dicor crowns: Part 1. Int J Prosthodont. 1990;3:159–68.Google Scholar
  20. 20.
    Schilinburg HT, Hobo S, Whitsett LD, Jacobi R, Brackett SE. Fundamentals of fixed prosthodontics. Chicago: Quintessence; 1997. p. 11–72.Google Scholar
  21. 21.
    Prothero JH. Prosthetic dentistry. Chicago, IL: Medico-Dental Publishing Co; 1923. p. 742. 1099, 1101-6, 1128-38Google Scholar
  22. 22.
    Jorgensen KD. The relationship between retention and convergence angle in cemented veneer crowns. Acta Odontol Scand. 1955;13:35–40.CrossRefGoogle Scholar
  23. 23.
    Wilson AH Jr, Chan DC. The relationship between preparation convergence and retention of extracoronal retainers. J Prosthodont. 1994;3:74–8.CrossRefGoogle Scholar
  24. 24.
    Annerstedt A, Engström U, Hansson A, Jansson T, Karlsson S, Lilijhagen H, et al. Axial wall convergence of full veneer crown preparations. Documented for dental students and general practitioners. Acta Odontol Scand. 1996;54:109–12.CrossRefGoogle Scholar
  25. 25.
    Sornsuwan T, Swain MV. Influence of occlusal geometry on ceramic crown fracture; role of cusp angle and fissure radius. J Mech Behav Biomed Mater. 2011;4:1057–66.CrossRefGoogle Scholar
  26. 26.
    Syu JZ, Byrne G, Laub LW, Land MF. Influence of finish-line geometry on the fit of crowns. Int J Prosthodont. 1993;6:25–30.Google Scholar
  27. 27.
    Jalalian E, Aletaha NS. The effect of two marginal designs (chamfer and shoulder) on the fracture resistance of all ceramic restorations, Inceram: an in vitro study. J Prosthodont Res. 2011;55:121–5.CrossRefGoogle Scholar
  28. 28.
    Addison O, Sodhi A, Fleming GJ. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements. Dent Mater. 2010;26:915–21.CrossRefGoogle Scholar
  29. 29.
    Thompson VP, Rekow DE. Dental ceramics and the molar crown testing ground. J Appl Oral Sci. 2004;12:26–36.CrossRefGoogle Scholar
  30. 30.
    Dejak B, Młotkowski A. 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dent Mater. 2013;29:309–17.CrossRefGoogle Scholar
  31. 31.
    de Almeida AA Jr, Munoz Chavez OF, Galvao BR, Adabo GL. Clinical fractures of veneered zirconia single crowns. Gen Dent. 2013;61:17–21.Google Scholar
  32. 32.
    Zahran M, El-Mowafy O, Tam L, Watson PA, Finer Y. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology. J Prosthodont. 2008;17:370–7.CrossRefGoogle Scholar
  33. 33.
    Fischer H, et al. Chemical strengthening of a dental lithium disilicate glass-ceramic material. J Biomed Mater Res A. 2008;87:582–7.CrossRefGoogle Scholar
  34. 34.
    Toman M, Toksavul S. Clinical evaluation of 121 lithium disilicate all-ceramic crowns up to 9 years. Quintessence Int. 2015;46:189–97.Google Scholar
  35. 35.
    Beier US, Kapferer I, Burtscher D, Giesinger JM, Dumfahrt H, Inlay onlay survival rates. Clinical performance of all-ceramic inlay and onlay restorations in posterior teeth.Int J Prosthodont. 2012;25:395–2Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.LBN (Laboratoire de Bioingénierie et Nanosciences) EA4203Univ. MontpellierMontpellierFrance
  2. 2.C2MA (Materials Center)Ecole des mines d’AlèsAlèsFrance
  3. 3.LGEI (Laboratory of Industrial Environment Engineering)Ecole des mines d’AlèsAlèsFrance
  4. 4.Department of Prosthodontics, Faculty of OdontologyUniv. MontpellierMontpellierFrance
  5. 5.Department of Oral Biology and Experimental Dental Research, Faculty of DentistryUniversity of SzegedSzegedHungary

Personalised recommendations