Advertisement

Transparent bactericidal ZnO nanocoatings

  • S. K. Evstropiev
  • K. V. Dukelskii
  • A. V. Karavaeva
  • V. N. Vasilyev
  • E. V. Kolobkova
  • N. V. Nikonorov
  • K. S. Evstropyev
Engineering and Nano-engineering Approaches for Medical Devices Rapid Communication
  • 174 Downloads
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices

Abstract

Thin bactericidal ZnO coatings prepared with the polymer-salt method are shown to be highly transparent in the visible. The spectral measurements and XRD analysis data show that coatings prepared are formed by ZnO nanoparticles ~ 10 nm in size. The coatings demonstrate the bactericidal effect against the gram-positive Staphylococcus aureus ATCC 209P and gram-negative Escherichia coli ATCC 25922 bacteria both under the natural light and in the darkness.

Graphical Abstract

Open image in new window

Notes

Acknowledgements

The work was funded by the Government of Russian Federation (grant no. 074-U01).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv. 2012;2(6):2314–21. doi 10.1039/C2RA00602B.CrossRefGoogle Scholar
  2. 2.
    Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir. 2008;24(8):4140–4.CrossRefGoogle Scholar
  3. 3.
    Basnet P, Larsen GK, Jadeja RP, Hung Y-C, Zhao Y. α-Fe2O3 nanocolums and nanorods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications. ACS Appl Mater Interfaces. 2013;5(6):2085–95.CrossRefGoogle Scholar
  4. 4.
    Mala M, Ravichandran K, Pandiarajan S, Srinivasan N, Ravikumar B, Catherine K, Pushpa Siriya, Swaminathan K, Arun T. Formation of hexagonal plate shaped ZnO microparticles – a study on antibacterial and magnetic properties. Cer Int. 2016;42(6):7336–46.CrossRefGoogle Scholar
  5. 5.
    Jaškova V, Hochmannova L, Vytřasová J. TiO2 and ZnO nanoparticles in photocatalytic and hygienic coatings. Int J of Photoenergy. 2013;Article ID 795060:6 pages. http://dx.doi.org/10.1155/2013/795060.Google Scholar
  6. 6.
    Khan ST, Ahmad J, Aham1ed M, Musarrat J, Al-Khedhairy AA. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. J Biolog Inorg Chem. 2016;21:295–303. DOI 10.1007/s00775-016-1339-x.CrossRefGoogle Scholar
  7. 7.
    Jin J, Liu W, Zhang W, Chen Q, Yuan Y, Yang L, Wang Q. Nano-ZnO/ZnO-HAPw prepared via sol-gel method and antibacterial activities of inorganic agents on six bacteria associated with oral infections. J Nanopart Res. 2014;16:2658. doi:10.1007/s11051-014-2658-x.CrossRefGoogle Scholar
  8. 8.
    Zhang J, Li S, Chen L, Pan Y, Yang S. The progress of TiO2 photocatalyst coating. IOSR J of Engineering. 2012;2(8):50–53.CrossRefGoogle Scholar
  9. 9.
    Dukel’skii KV, Evstrop’ev SK. Forming protective nanoscale coatings based on Al2O3 (Al2O3-AlF3) on a glass surface. J Opt Techn. 2011;78(2):137–44.CrossRefGoogle Scholar
  10. 10.
    Langford JI, Wilson AJC. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst. 1978;11:102–13.CrossRefGoogle Scholar
  11. 11.
    Guo Lin, Yang S, Yang C, Yu P, Wang J, Ge W, K.L. G. Wong, Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl Phys Lett. 2000;76(20):2901–3.CrossRefGoogle Scholar
  12. 12.
    Toshihiro D, Yoshio N. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. J Phys Chem C. 2007;111(11):4420–4. doi: 10.1021/jp070028y. CrossRefGoogle Scholar
  13. 13.
    Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull. 1968;3(1):37–46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • S. K. Evstropiev
    • 1
  • K. V. Dukelskii
    • 2
  • A. V. Karavaeva
    • 3
  • V. N. Vasilyev
  • E. V. Kolobkova
    • 1
  • N. V. Nikonorov
    • 1
  • K. S. Evstropyev
    • 1
  1. 1.Saint-Petersburg National Research University ITMOSaint-PetersburgRussia
  2. 2.Saint-Petersburg State Chemical-Pharmaceutical AcademySaint-PetersburgRussia
  3. 3.The Bonch-Bruevich Saint-Petersburg State University of TelecommunicationsSaint-PetersburgRussia

Personalised recommendations