Green synthesis of rifampicin-loaded copper nanoparticles with enhanced antimicrobial activity

  • Marta J. Woźniak-Budych
  • Łucja Przysiecka
  • Krzysztof Langer
  • Barbara Peplińska
  • Marcin Jarek
  • Maciej Wiesner
  • Grzegorz Nowaczyk
  • Stefan Jurga
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization

Abstract

The antimicrobial properties of copper and rifampicin-loaded copper nanoparticles were investigated using four strains: Staphylococcus aureus, Escherichia coli, Bacillus pumilis and Pseudomonas fluorescens. Spherical-shaped copper nanoparticles were synthesized via green reduction method from the peppermint extract. It was found that adsorption of rifampicin on the copper nanosurface enhances its biological activity and prevents the development of resistance. The interactions between rifampicin-copper nanoparticles and bacteria cells were monitored using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). It was proven that loaded with rifampicin copper nanoparticles were able to damage the S. aureus cell membrane and facilitate the bacteria biofilm matrix disintegration. Moreover, the DNA decomposition of S. aureus treated with copper and rifampicin-copper nanoparticles was confirmed by agarose gel electrophoresis. The results obtained indicate that adsorption of rifampicin on the copper nanoparticles surface might provide the reduction of antibiotic dosage and prevent its adverse side effects.

Graphical Abstract

Open image in new window

Supplementary material

10856_2017_5857_MOESM1_ESM.pdf (1.2 mb)
Supplementary Information

References

  1. 1.
    Giamarellou H, Poulakou G. Multidrug-resistant gram-negative infections: what are the treatment options? Drugs. 2009;69:1879–1901.CrossRefGoogle Scholar
  2. 2.
    Woodford N, Livermore DM. Infections caused by gram-positive bacteria: a review of the global challenge. J Infect. 2009;59:14–6.CrossRefGoogle Scholar
  3. 3.
    Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 2012;127:4–22.Google Scholar
  4. 4.
    Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol. 2005;5:244–9.CrossRefGoogle Scholar
  5. 5.
    Usman MS, Zowalaty MEE, Shameli K, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013;8:4467–79.Google Scholar
  6. 6.
    Perreault F, De Faria AF, Nejati S, Elimelech M. Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano. 2015;9:7226–36.CrossRefGoogle Scholar
  7. 7.
    Salar RK, Sharma P, Kumar N. Enhanced antibacterial activity of streptomycin against some human pathogens using green synthesized silver nanoparticles. Res-Efficient Technol. 2015;1:106–15.CrossRefGoogle Scholar
  8. 8.
    Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003;3:1261–3.CrossRefGoogle Scholar
  9. 9.
    Li P, Li J, Wu C, Wu Q, Li J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology. 2005;16:1912–7.CrossRefGoogle Scholar
  10. 10.
    Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett. 2012;71:114–6.CrossRefGoogle Scholar
  11. 11.
    Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4:707–16.CrossRefGoogle Scholar
  12. 12.
    Lee Y, Choi JR, Lee KJ, Stott NE, Kim D. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology. 2008;19:415604CrossRefGoogle Scholar
  13. 13.
    Zatcoff RC, Smith MS, Borkow G. Treatment of tinea pedis with socks containing copper-oxide impregnated fibers. Foot. 2008;18:136–41.CrossRefGoogle Scholar
  14. 14.
    Borkow G, Zhou SS, Page T, Gabbay J. A novel anti-influenza copper oxide containing respiratory face mask. PLoS ONE. 2010;5:e11295CrossRefGoogle Scholar
  15. 15.
    Palaza H. Antimicrobial polymers with metal nanoparticles. Int J Mol Sci. 2015;16:2099–116.CrossRefGoogle Scholar
  16. 16.
    Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibki K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C. 2010;44:278–84.CrossRefGoogle Scholar
  17. 17.
    Park S, Cha SH, Cho I, Park S, Park Y, Cho S, Park Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater Sci Eng C. 2016;58:1160–9.CrossRefGoogle Scholar
  18. 18.
    Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32CrossRefGoogle Scholar
  19. 19.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.CrossRefGoogle Scholar
  20. 20.
    Singh R, Shushni MAM, Belkheir A. Antibacterial and antioxidant activities of Mentha piperita L. Arabian J Chem. 2015;8:322–8.CrossRefGoogle Scholar
  21. 21.
    Gercel O, Gercel HF. Adsorption of lead (II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem Eng J. 2007;132:289–97.CrossRefGoogle Scholar
  22. 22.
    Pi J, Yang F, Jin H, Huang X, Liu R, Yang P. Selenium nanoparticles induced membrane bio-mechanical property changes in MCF-7 cells by disturbing membrane molecules and F-actin. Bioorg Med Chem Lett. 2013;23:6296–303.CrossRefGoogle Scholar
  23. 23.
    Stewart PS. Diffusion in biofilms. J Bacteriol. 2003;185:1485–91.CrossRefGoogle Scholar
  24. 24.
    Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104:901–12.CrossRefGoogle Scholar
  25. 25.
    Kaczmarska L, Jakoniuk P. Therapeutic effect of some antibiotics on experimental staphylococcal infection and its correlation with in vitro activity of antibiotics in sub-inhibitory concentration against Staphylococcus aureus strains. Med Dosw Mikrobiol. 2003;55:1–10.Google Scholar
  26. 26.
    Bailey RG, Turner RD, Mullin N, Clarke N, Foster SJ, Hobbs JK. The interplay between cell wall mechanical properties and the cell cycle in Staphylococcus aureus. Biophys J. 2014;107:2538–45.CrossRefGoogle Scholar
  27. 27.
    Avery SV. Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol. 2006;4:577–87.CrossRefGoogle Scholar
  28. 28.
    Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31:346–56.CrossRefGoogle Scholar
  29. 29.
    Parsons J, Peralta-Videa J, Gardea-Torresdey J. Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Rev Environ Sci. 2007;5:463–85.Google Scholar
  30. 30.
    Patil R, Kokate M, Kolekar S. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2012;91:234–8.CrossRefGoogle Scholar
  31. 31.
    Hughes D, Andersson DI. Antibiotic development and resistance. NewYork, NY: Taylor and Francis Inc; 2001.Google Scholar
  32. 32.
    Kleszczewska E, Kozakiewicz H. The analysis of cuprum and mercury combinations with l-ascorbic acid dependent on the level of metal oxidation. Toxicol Lett. 1998;95:130CrossRefGoogle Scholar
  33. 33.
    Timberlake CF. Complex formation between copper and some organic acids, phenols, and phenolic acids occurring in fruit. J Chem Soc. 1959;561:2795–98.CrossRefGoogle Scholar
  34. 34.
    Khlebtsov BN, Khlebtsov NG. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 2011;73:118–27.CrossRefGoogle Scholar
  35. 35.
    Riedel DJ, Weekes E, Forrest GN. Addition of rifampicin to the standard therapy for treatment of native valve infective endocarditis caused by Staphylococcus aureus. Antimicrob Agents Chemother. 2009;52:2463–7.CrossRefGoogle Scholar
  36. 36.
    Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampicin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foregin-body infection (FBI) study group. J Am Med Assoc. 1998;279:1537–41.CrossRefGoogle Scholar
  37. 37.
    Wu S, Zhao X, Li Y, Du Q, Sun Y, Wang Y, Wang X, Xia Y, Wang Z, Xia L. Adsorption properties of doxorubicin hydrochloride onto graphene oxide: equilibrium, kinetic and thermodynamic studies. Materials. 2013;6:2026–42.CrossRefGoogle Scholar
  38. 38.
    Lyubchik S, Lyubchik A, Lygina O, Lyubchik S, Fonseca I. (editors) Comparison of the thermodynamic parameters estimation for the adsorption process of the metals from liquid phase on activated carbons. Thermodynamics—interaction studies—solids, liquids and gases. InTech. 2011. Available from: http://www.intechopen.com/books/thermodynamics-interaction-studies-solids-liquids-and-gases/comparison-of-the-thermodynamic-parameters-estimation-for-the-adsorption-process-of-the-metals-from-
  39. 39.
    Marczewski AW, Seczkowska M, Deryło-Marczewska A, Blachnio M. Adsorption equilibrium and kinetics of selected phenoxyacid pesticides on activated carbon: effect of temperature. Adsorption. 2016;22:777–90.CrossRefGoogle Scholar
  40. 40.
    Haberlandt R, Michel D, Pöppl A, Stannarius R. Molecules in interaction with surfaces and interfaces (lecture notes in physics). Berlin: Springer; 2004.CrossRefGoogle Scholar
  41. 41.
    Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25:135101CrossRefGoogle Scholar
  42. 42.
    Subhankari I, Nayak PL. Antimicrobial activity of copper nanoparticles synthesised by ginger (Zingiber officinale) extract. World J Nucl Sci Technol. 2013;2:10–3.Google Scholar
  43. 43.
    Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Med Microbiol. 2009;49:1749–55.Google Scholar
  44. 44.
    Suleiman M, Al-Masri M, Al-Ali A, Aref D, Hussein A, Saadeddin I, Warad I. Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities. J Mater Environ Sci. 2015;6:513–8.Google Scholar
  45. 45.
    Arasoglu T, Derman S, Mansuroglu B. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Nanotechnology. 2016;27:025103CrossRefGoogle Scholar
  46. 46.
    Singhal SK, Lal M, Kabi SR, Mathur RB. Synthesis of Cu/CNTs nanocomposites for antimicrobial activity. Adv Nat Sci: Nanosci Nanotechnol. 2012;3:045011Google Scholar
  47. 47.
    Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci. 2015;104:872–905.CrossRefGoogle Scholar
  48. 48.
    Buss WC, Reyes E, Barela TD. Metal ion catalyzed oxidation of the antibiotic rifampicin. Res Commun Chem Pathol Pharmacol. 1977;17:547–609.Google Scholar
  49. 49.
    Sorokoumova GM, Vostrikov VV, Selishcheva AA, Rogozhkina EA, Kalashnikova VI, Shvets VI, Golyshevskaya LP, Martynova VV, Erokhin V. Bacteriostatic activity and decomposition products of rifampicin in aqueous solution and liposomal composition. Pharm Chem J. 2008;42:475–8.CrossRefGoogle Scholar
  50. 50.
    Ristic BZ, Milenkovic MM, Dakic IR, Todorovic-Markovic BM, Milosavljevic MS, Budimir MD, Paunovic VG, Dramicanin MD, Markovic ZM, Trajkovic VS. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials. 2014;35:4428–35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Marta J. Woźniak-Budych
    • 1
  • Łucja Przysiecka
    • 1
  • Krzysztof Langer
    • 1
  • Barbara Peplińska
    • 1
  • Marcin Jarek
    • 1
  • Maciej Wiesner
    • 1
  • Grzegorz Nowaczyk
    • 1
  • Stefan Jurga
    • 1
  1. 1.NanoBiomedical Centre, Adam Mickiewicz University in PoznańPoznańPoland

Personalised recommendations