Advertisement

Computational model-based probabilistic analysis of in vivo material properties for ligament stiffness using the laxity test and computed tomography

  • Kyoung-Tak Kang
  • Sung-Hwan Kim
  • Juhyun Son
  • Young Han Lee
  • Heoung-Jae ChunEmail author
Clinical Applications of Biomaterials Original Research
Part of the following topical collections:
  1. Clinical Applications of Biomaterials

Abstract

The objective of this paper was to evaluate in vivo material properties in order to address technical aspects of computational modeling of ligaments in the tibiofemoral joint using a probabilistic method. The laxity test was applied to the anterior-posterior drawer under 30° and 90° of flexion with a series of stress radiographs, a Telos device, and computed tomography. Ligament stiffness was investigated using sensitivity analysis based on the Monte-Carlo method with a subject-specific finite element model generated from in vivo computed tomography and magnetic resonance imaging data, subjected to laxity test conditions. The material properties of ligament stiffness and initial ligament strain in a subject-specific finite element model were optimized to minimize the differences between the movements of the tibia and femur in the finite element model and the computed tomography images in the laxity test. The posterior cruciate ligament was the most significant factor in flexion and posterior drawer, while the anterior cruciate ligament primarily was the most significant factor for the anterior drawer. The optimized material properties model predictions in simulation and the laxity test were more accurate than predictions based on the initial material properties in subject-specific computed tomography measurement. Thus, this study establishes a standard for future designs in allograft, xenograft, and artificial ligaments for anterior cruciate ligament and posterior cruciate ligament injuries.

Keywords

Anterior Cruciate Ligament Finite Element Model Posterior Cruciate Ligament Intraclass Correlation Coefficient Knee Laxity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10856_2016_5797_MOESM1_ESM.docx (1.2 mb)
Supplementary Information

References

  1. 1.
    Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. Three-dimensional finite element modeling of ligaments: technical aspects. Med Eng Phys. 2005;27(10):845–61.CrossRefGoogle Scholar
  2. 2.
    Carey RE, Zheng L, Aiyangar AK, Harner CD, Zhang X. Subject-specific finite element modeling of the tibiofemoral joint based on CT, magnetic resonance imaging and dynamic stereo-radiography data in vivo. J Biomech Eng. 2014;136(4). doi: 10.1115/1.4026228.
  3. 3.
    Gardiner JC, Weiss JA. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res. 2003;21(6):1098–106.CrossRefGoogle Scholar
  4. 4.
    Limbert G, Middleton J. A constitutive model of the posterior cruciate ligament. Med Eng Phys. 2006;28(2):99–113.CrossRefGoogle Scholar
  5. 5.
    Dhaher YY, Kwon TH, Barry M. The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. J Biomech. 2010;43(16):3118–25.CrossRefGoogle Scholar
  6. 6.
    Li G, Lopez O, Rubash H. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J Biomech Eng. 2001;123(4):341–6.CrossRefGoogle Scholar
  7. 7.
    Besier TF, Gold GE, Delp SL, Fredericson M, Beaupre GS. The influence of femoral internal and external rotation on cartilage stresses within the patellofemoral joint. J Orthop Res. 2008;26(12):1627–35.CrossRefGoogle Scholar
  8. 8.
    Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR. The sensitivity of tibiofemoral contact pressure to the size and shape of the lateral and medial menisci. J Orthop Res. 2004;22(4):807–14.CrossRefGoogle Scholar
  9. 9.
    Yao J, Funkenbusch PD, Snibbe J, Maloney M, Lerner AL. Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. J Biomech Eng. 2006;128(3):399–408.CrossRefGoogle Scholar
  10. 10.
    Zelle J, Heesterbeek PJ, De Waal Malefijt M, Verdonschot N. Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys. 2010;32(7):700–7.CrossRefGoogle Scholar
  11. 11.
    Baldwin MA, Laz PJ, Stowe JQ, Rullkoetter PJ. Efficient probabilistic representation of tibiofemoral soft tissue constraint. Comput Methods Biomech Biomed Engin. 2009;12(6):651–9.CrossRefGoogle Scholar
  12. 12.
    Ewing JA, Kaufman MK, Hutter EE, Granger JF, Beal MD, Piazza SJ, et al. Estimating patient-specific soft-tissue properties in a TKA knee. J Orthop Res. 2016;34(3):435–43.CrossRefGoogle Scholar
  13. 13.
    Kang KT, Kim SH, Son J, Lee YH, Chun HJ. Probabilistic approach for determining the material properties of meniscal attachments in vivo using magnetic resonance imaging and a finite element model. J Comput Biol. 2015;22(12):1097–107.CrossRefGoogle Scholar
  14. 14.
    Kwon OR, Kang KT, Son J, Kwon SK, Jo SB, Suh DS, et al. Biomechanical comparison of fixed- and mobile-bearing for unicomparmental knee arthroplasty using finite element analysis. J Orthop Res. 2014;32(2):338–45.CrossRefGoogle Scholar
  15. 15.
    Kim YS, Kang KT, Son J, Kwon OR, Choi YJ, Jo SB, et al. Graft extrusion related to the position of allograft in lateral meniscal allograft transplantation: biomechanical comparison between parapatellar and transpatellar approaches using finite element analysis. Arthroscopy. 2015;31(12):2380–91.CrossRefGoogle Scholar
  16. 16.
    Garavaglia G, Lubbeke A, Dubois-Ferriere V, Suva D, Fritschy D, Menetrey J. Accuracy of stress radiography techniques in grading isolated and combined posterior knee injuries: a cadaveric study. Am J Sports Med. 2007;35(12):2051–6.CrossRefGoogle Scholar
  17. 17.
    Margheritini F, Mancini L, Mauro CS, Mariani PP. Stress radiography for quantifying posterior cruciate ligament deficiency. Arthroscopy. 2003;19(7):706–11.CrossRefGoogle Scholar
  18. 18.
    Jacobsen K. Stress radiographical measurement of the anteroposterior, medial and lateral stability of the knee joint. Acta Orthop Scand. 1976;47(3):335–44.CrossRefGoogle Scholar
  19. 19.
    Staubli HU, Jakob RP. Posterior instability of the knee near extension: a clinical and stress radiographic analysis of acute injuries of the posterior cruciate ligament. J Bone Joint Surg Br. 1990;72(2):225–30.Google Scholar
  20. 20.
    Cobb JP, Dixon H, Dandachli W, Iranpour F. The anatomical tibial axis: reliable rotational orientation in knee replacement. J Bone Joint Surg Br. 2008;90(8):1032–8.CrossRefGoogle Scholar
  21. 21.
    Koo S, Gold GE, Andriacchi TP. Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy. Osteoarthr Cartil. 2005;13(9):782–9.CrossRefGoogle Scholar
  22. 22.
    Pena E, Calvo B, Martinez MA, Doblare M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006;39(9):1686–701.CrossRefGoogle Scholar
  23. 23.
    Shelburne KB, Torry MR, Pandy MG. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res. 2006;24(10):1983–90.CrossRefGoogle Scholar
  24. 24.
    LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Joint Surg Am. 2007;89(9):2000–10.Google Scholar
  25. 25.
    LaPrade RF, Morgan PM, Wentorf FA, Johansen S, Engebretsen L. The anatomy of the posterior aspect of the knee: an anatomic study. J Bone Joint Surg Am. 2007;89(4):758–64.Google Scholar
  26. 26.
    Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL. Quantitative analysis of human cruciate ligament insertions. Arthroscopy. 1999;15(7):741–9.CrossRefGoogle Scholar
  27. 27.
    Blankevoort L, Huiskes R. Validation of a three-dimensional model of the knee. J Biomech. 1996;29(7):955–61.CrossRefGoogle Scholar
  28. 28.
    Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech. 1994;27(1):13–24.CrossRefGoogle Scholar
  29. 29.
    Robinson JR, Bull AM, Amis AA. Structural properties of the medial collateral ligament complex of the human knee. J Biomech. 2005;38(5):1067–74.CrossRefGoogle Scholar
  30. 30.
    Easley SK, Pal S, Tomaszewski PR, Petrella AJ, Rullkoetter PJ, Laz PJ. Finite element-based probabilistic analysis tool for orthopaedic applications. Comput Methods Programs Biomed. 2007;85(1):32–40.CrossRefGoogle Scholar
  31. 31.
    Kang KT, Kim SH, Son J, Lee YH, Chun HJ. Probabilistic evaluation of the material properties of the in vivo subject-specific articular surface using a computational model. J Biomed Mater Res B Appl Biomater. 2016. doi: 10.1002/jbm.b.33666.
  32. 32.
    Pugh L, Mascarenhas R, Arneja S, Chin PY, Leith JM. Current concepts in instrumented knee-laxity testing. Am J Sports Med. 2009;37(1):199–210.CrossRefGoogle Scholar
  33. 33.
    Kang KT, Kim SH, Son J, Lee YH, Chun HJ. In vivo evaluation of the subject-specific finite element model for knee joint cartilage contact area. Int J Precision Eng Manuf. 2015;16(6):1171–7.CrossRefGoogle Scholar
  34. 34.
    Li G, Suggs J, Gill T. The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation. Ann Biomed Eng. 2002;30(5):713–20.CrossRefGoogle Scholar
  35. 35.
    Lenhart RL, Kaiser J, Smith CR, Thelen DG. Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement. Ann Biomed Eng. 2015;43(11):2675–85.CrossRefGoogle Scholar
  36. 36.
    Song Y, Debski RE, Musahl V, Thomas M, Woo SL. A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech. 2004;37(3):383–90.CrossRefGoogle Scholar
  37. 37.
    Nau T, Chevalier Y, Hagemeister N, Duval N, deGuise JA. 3D kinematic in-vitro comparison of posterolateral corner reconstruction techniques in a combined injury model. Knee Surg Sports Traumatol Arthrosc. 2005;13(7):572–80.CrossRefGoogle Scholar
  38. 38.
    Chun YM, Kim SJ, Kim HS. Evaluation of the mechanical properties of posterolateral structures and supporting posterolateral instability of the knee. J Orthop Res. 2008;26(10):1371–6.CrossRefGoogle Scholar
  39. 39.
    Wang L, Lin L, Feng Y, Fernandes TL, Asnis P, Hosseini A, et al. Anterior cruciate ligament reconstruction and cartilage contact forces—a 3D computational simulation. Clin Biomech. 2015;30(10):1175–80.CrossRefGoogle Scholar
  40. 40.
    Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. Knee. 2006;13(3):184–8.CrossRefGoogle Scholar
  41. 41.
    Cosgarea AJ, Jay PR. Posterior cruciate ligament injuries: evaluation and management. J Am Acad Orthop Surg. 2001;9(5):297–307.CrossRefGoogle Scholar
  42. 42.
    Barry MJ, Kwon TH, Dhaher YY. Probabilistic musculoskeletal modeling of the knee: A preliminary examination of an ACL-reconstruction. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5440–3.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kyoung-Tak Kang
    • 1
  • Sung-Hwan Kim
    • 2
  • Juhyun Son
    • 1
  • Young Han Lee
    • 3
  • Heoung-Jae Chun
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringYonsei UniversitySeodaemun-guRepublic of Korea
  2. 2.Department of Orthopedic Surgery, Arthroscopy and Joint Research InstituteYonsei University College of Medicine, Gangnam Severance HospitalGangnam-guRepublic of Korea
  3. 3.Department of Radiology, Research Institute of Radiological Science, Medical Convergence Research Institute, and Severance Biomedical Science InstituteYonsei University College of MedicineSeodaemun-guRepublic of Korea

Personalised recommendations