Simvastatin-doped pre-mixed calcium phosphate cement inhibits osteoclast differentiation and resorption

  • M. MontazerolghaemEmail author
  • A. Rasmusson
  • H. Melhus
  • H. Engqvist
  • M. Karlsson Ott
Delivery Systems Original Research
Part of the following topical collections:
  1. Delivery Systems


Simvastatin, a cholesterol lowering drug, has been shown to have positive effects on fracture healing and bone regeneration based on its dual effect; bone anabolic and anti-resorptive. In this study the focus has been on the anti-resorptive effect of the drug and its impact on the degradation of acidic calcium phosphate cement. The drug was added to the pre-mixed acidic cement in three different doses (0.1, 0.25 and 0.5 mg/g cement) and the release was measured. Furthermore the effect of the loaded cements on osteoclast differentiation and resorption was evaluated by TRAP activity, number of multinucleated cells, gene expression and calcium ion concentration in vitro using murine bone marrow macrophages. The simvastatin did not affect the cell proliferation while it clearly inhibited osteoclastic differentiation at all three doses as shown by TRAP staining, TRAP activity and gene expression. Consistent with these results, simvastatin also impaired resorption of cements by osteoclasts as indicated by reduced calcium ion concentrations. In conclusion, our findings suggest that simvastatin-doped pre-mixed acidic calcium phosphate cement inhibits the osteoclastic mediated resorption of the cement thus slowing down the degradation rate. In addition with simvastatin’s bone anabolic effect it makes the cement-drug combination a promising bone graft material, especially useful for sites with compromised bone formation.


Simvastatin Calcium Phosphate Cement MCPA Trap Activity Osteoclastic Resorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31(Supplement 4(0)):D37–47.CrossRefGoogle Scholar
  2. 2.
    Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8. doi: 10.1126/science.289.5484.1504.CrossRefGoogle Scholar
  3. 3.
    Mistry A, Mikos A. Tissue engineering strategies for bone regeneration. In: Yannas I, editor. Regenerative medicine II. Advances in biochemical engineering. Berlin: Springer; 2005. p. 1–22.Google Scholar
  4. 4.
    Grossardt C, Ewald A, Grover LM, Barralet JE, Gbureck U. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteclastic cells. Tissue Eng Part A. 2010;16(12):3687–95. doi: 10.1089/ten.tea.2010.0281.CrossRefGoogle Scholar
  5. 5.
    Montazerolghaem M, Karlsson Ott M, Engqvist H, Melhus H, Rasmusson AJ. Resorption of monetite calcium phosphate cement by mouse bone marrow derived osteoclasts. Mater Sci Eng C. 2015;52:212–8. doi: 10.1016/j.msec.2015.03.038.CrossRefGoogle Scholar
  6. 6.
    Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 2012;8(2):474–87. doi: 10.1016/j.actbio.2011.08.005.CrossRefGoogle Scholar
  7. 7.
    Yamashita M, Otsuka F, Mukai T, Yamanaka R, Otani H, Matsumoto Y, et al. Simvastatin inhibits osteoclast differentiation induced by bone morphogenetic protein-2 and RANKL through regulating MAPK, AKT and Src signaling. Regul Peptides. 2010;162(1–3):99–108. doi: 10.1016/j.regpep.2010.03.003.CrossRefGoogle Scholar
  8. 8.
    Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9. doi: 10.1126/science.286.5446.1946.CrossRefGoogle Scholar
  9. 9.
    Wang JW, Xu SW, Yang DS, Lv RK. Locally applied simvastatin promotes fracture healing in ovariectomized rat. Osteoporos Int. 2007;18(12):1641–50. doi: 10.1007/s00198-007-0412-2.CrossRefGoogle Scholar
  10. 10.
    Skoglund B, Aspenberg P. Locally applied Simvastatin improves fracture healing in mice. BMC Musculoskeletal Disorders. 2007;8(1):98.CrossRefGoogle Scholar
  11. 11.
    Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280(3):874–7. doi: 10.1006/bbrc.2000.4232.CrossRefGoogle Scholar
  12. 12.
    Fukui T, Ii M, Shoji T, Matsumoto T, Mifune Y, Kawakami Y, et al. Therapeutic effect of local administration of low-dose simvastatin-conjugated gelatin hydrogel for fracture healing. J Bone Miner Res. 2012;27(5):1118–31. doi: 10.1002/jbmr.1558.CrossRefGoogle Scholar
  13. 13.
    Aberg J, Brisby H, Henriksson HB, Lindahl A, Thomsen P, Engqvist H. Premixed acidic calcium phosphate cement: characterization of strength and microstructure. J Biomed Mater Res B Appl Biomater. 2010;93B(2):436–41. doi: 10.1002/jbm.b.31600.CrossRefGoogle Scholar
  14. 14.
    Takagi S, Chow LC, Hirayama S, Sugawara A. Premixed calcium–phosphate cement pastes. J Biomed Mater Res B Appl Biomater. 2003;67B(2):689–96. doi: 10.1002/jbm.b.10065.CrossRefGoogle Scholar
  15. 15.
    Kaesemeyer WH, Caldwell RB, Huang J, Caldwell RW. Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. J Am Coll Cardiol. 1999;33(1):234–41. doi: 10.1016/s0735-1097(98)00514-2.CrossRefGoogle Scholar
  16. 16.
    Takeshita S, Kaji K, Kudo A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res. 2000;15(8):1477–88. doi: 10.1359/jbmr.2000.15.8.1477.CrossRefGoogle Scholar
  17. 17.
    Granholm S, Lundberg P, Lerner U. Calcitonin inhibits osteoclast fromation in mouse haematopoetic cells independently of transcriptional regulation by receptor activator of NF-kappaB and c-Fms. J Endocrinol. 2007;195(3):415–27.CrossRefGoogle Scholar
  18. 18.
    Quinn JM, Elliott J, Gillespie MT, Martin TJ. A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology. 1998;139(10):4424–7. doi: 10.1210/endo.139.10.6331.CrossRefGoogle Scholar
  19. 19.
    Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.CrossRefGoogle Scholar
  20. 20.
    Ek-Rylander B, Barkhem T, Ljusberg J, Ohman L, Andersson K, Andersson G. Comparative studies of rat recombinant purple acid phosphatase and bone tartrate-resistant acid phosphatase. Biochem J. 1997;321(2):305–11.CrossRefGoogle Scholar
  21. 21.
    Ayukawa Y, Yasukawa E, Moriyama Y, Ogino Y, Wada H, Atsuta I, et al. Local application of statin promotes bone repair through the suppression of osteoclasts and the enhancement of osteoblasts at bone-healing sites in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2009;107(3):336–42. doi: 10.1016/j.tripleo.2008.07.013.CrossRefGoogle Scholar
  22. 22.
    Nyan M, Sato D, Kihara H, Machida T, Ohya K, Kasugai S. Effects of the combination with α-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implant Res. 2009;20(3):280–7. doi: 10.1111/j.1600-0501.2008.01639.x.CrossRefGoogle Scholar
  23. 23.
    Tanigo T, Takaoka R, Tabata Y. Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. J Controll Release. 2010;143(2):201–6. doi: 10.1016/j.jconrel.2009.12.027.CrossRefGoogle Scholar
  24. 24.
    Montazerolghaem M, Engqvist H, Karlsson Ott M. Sustained release of simvastatin from premixed injectable calcium phosphate cement. J Biomed Mater Res Part A. 2014;102(2):340–7. doi: 10.1002/jbm.a.34702.CrossRefGoogle Scholar
  25. 25.
    Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol. 2004;228(1–2):79–102. doi: 10.1016/j.mce.2003.06.002.CrossRefGoogle Scholar
  26. 26.
    Woo J-T, Kasai S, Stern PH, Nagai K. Compactin suppresses bone resorption by inhibiting the fusion of prefusion osteoclasts and disrupting the actin ring in osteoclasts. J Bone Miner Res. 2000;15(4):650–62. doi: 10.1359/jbmr.2000.15.4.650.CrossRefGoogle Scholar
  27. 27.
    Aberg J, Henriksson HB, Engqvist H, Palmquist A, Lindahl A, Thomsen P, et al. In vitro and in vivo evaluation of an injectable premixed calcium phosphate cement; Cell viability and immunological response from rat. Int J Nano Biomater. 2011;3(3):203–21.CrossRefGoogle Scholar
  28. 28.
    Ginebra M-P, Traykova T, Planell JA. Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials. 2006;27(10):2171–7. doi: 10.1016/j.biomaterials.2005.11.023.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Montazerolghaem
    • 1
    Email author
  • A. Rasmusson
    • 2
  • H. Melhus
    • 2
  • H. Engqvist
    • 1
  • M. Karlsson Ott
    • 1
  1. 1.Department of Engineering Sciences, Division of Applied Materials ScienceUppsala UniversityUppsalaSweden
  2. 2.Department of Medical Sciences, Section of Clinical PharmacologyUppsala UniversityUppsalaSweden

Personalised recommendations