In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films

  • Erik Unosson
  • Matthias Morgenstern
  • Håkan Engqvist
  • Ken Welch
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization

Abstract

Implanted materials are susceptible to bacterial colonization and biofilm formation, which can result in severe infection and lost implant function. UV induced photocatalytic disinfection on TiO2 and release of Ag+ ions are two promising strategies to combat such events, and can be combined for improved efficiency. In the current study, a combinatorial physical vapor deposition technique was utilized to construct a gradient coating between Ag and Ti oxide, and the coating was evaluated for antibacterial properties in darkness and under UV light against Staphylococcus epidermidis. The findings revealed a potent antibacterial effect in darkness due to Ag+ release, with near full elimination (97 %) of viable bacteria and visible cell lysis on Ag dominated surfaces. The photocatalytic activity, however, was demonstrated poor due to low TiO2 crystallinity, and UV light irradiation of the coating did not contribute to the antibacterial effect. On the contrary, bacterial viability was in several instances higher after UV illumination, proposing a UV induced SOS response from the bacteria that limited the reduction rate during Ag+ exposure. Such secondary effects should thus be considered in the development of multifunctional coatings that rely on UV activation.

Graphical Abstract

Notes

Acknowledgments

This work was supported by the Swedish Foundation for Strategic Research (SSF), through the ProViking Project.

References

  1. 1.
    Campoccia D, Montanaro L, Arciola CR. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials. 2013;34:8018–29.CrossRefGoogle Scholar
  2. 2.
    Neu HC. The crisis in antibiotic resistance. Science. 1992;257:1064–73.CrossRefGoogle Scholar
  3. 3.
    Yu J, Xiong J, Cheng B, Liu S. Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B Environ. 2005;60:211–21.CrossRefGoogle Scholar
  4. 4.
    Yu B, Leung KM, Guo Q, Lau WM, Yang J. Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology. 2011;22:115603.CrossRefGoogle Scholar
  5. 5.
    Maness P, Smolinski S, Blake D, Huang Z, Wolfrum E, Jacoby W. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999;65:4094–8.Google Scholar
  6. 6.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–8.CrossRefGoogle Scholar
  7. 7.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.CrossRefGoogle Scholar
  8. 8.
    Sung-Suh HM, Choi JR, Hah HJ, Koo SM, Bae YC. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photoch Photobiol A. 2004;163:37–44.CrossRefGoogle Scholar
  9. 9.
    Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV. Titania and silver-titania composite films on glass-potent antimicrobial coatings. J Mater Chem. 2006;17:95–104. doi: 10.1039/b611740f.CrossRefGoogle Scholar
  10. 10.
    Seery MK, George R, Floris P, Pillai SC. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photoch Photobio A. 2007;189:258–63. doi: 10.1016/j.jphotochem.2007.02.010.CrossRefGoogle Scholar
  11. 11.
    Mai L, Wang D, Zhang S, Xie Y, Huang C, Zhang Z. Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate. Appl Surf Sci. 2010;257:974–8.CrossRefGoogle Scholar
  12. 12.
    Necula BS, Fratila-Apachitei LE, Zaat SAJ, Apachitei I, Duszczyk J. In vitro antibacterial activity of porous TiO2–Ag composite layers against methicillin-resistant Staphylococcus aureus. Acta Biomater. 2009;5:3573–80.CrossRefGoogle Scholar
  13. 13.
    Machida M, Norimoto K, Kimura T. Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware. J Am Ceram Soc. 2004;88:95–100.CrossRefGoogle Scholar
  14. 14.
    Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online. 2006;5:22.CrossRefGoogle Scholar
  15. 15.
    Unosson E, Rodriguez D, Welch K, Engqvist H. Reactive combinatorial synthesis and characterization of a gradient Ag-Ti oxide thin film with antibacterial properties. Acta Biomater. 2015;11:503–10.CrossRefGoogle Scholar
  16. 16.
    McFarland E, Weinberg W. Combinatorial approaches to materials discovery. Trends Biotechnol. 1999;17:107–15.CrossRefGoogle Scholar
  17. 17.
    Amis EJ, Xiang X-D, Zhao J-C. Combinatorial materials science: What’s new since Edison? MRS Bull. 2002;27:295–300.CrossRefGoogle Scholar
  18. 18.
    Unosson E, Tsekoura EK, Engqvist H, Welch K. Synergetic inactivation of Staphylococcus epidermidis and Streptococcus mutansin a TiO2/H2O2/UV system. Biomatter. 2013;3:e26727.CrossRefGoogle Scholar
  19. 19.
    Unosson E, Cai Y, Jiang X, Lööf J, Welch K, Engqvist H. Antibacterial properties of dental luting agents: potential to hinder the development of secondary caries. Int J Dent. 2012;2012:1–7.CrossRefGoogle Scholar
  20. 20.
    Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42:321–4.CrossRefGoogle Scholar
  21. 21.
    Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7:22–39.CrossRefGoogle Scholar
  22. 22.
    Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2011;90:1847–68.CrossRefGoogle Scholar
  23. 23.
    Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2010;32:5706–16.CrossRefGoogle Scholar
  24. 24.
    Lan M-Y, Liu C-P, Huang H-H, Lee S-W. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS One. 2013;8:e75364.CrossRefGoogle Scholar
  25. 25.
    Unosson E, Welch K, Persson C, Engqvist H. Stability and prospect of UV/H2O2 activated titania films for biomedical use. Appl Surf Sci. 2013;285:317–23.CrossRefGoogle Scholar
  26. 26.
    Carp O, Huisman C, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem. 2004;32:33–177.CrossRefGoogle Scholar
  27. 27.
    Lindenauer KG, Darby JL. Ultraviolet disinfection of wastewater: Effect of dose on subsequent photoreactivation. Water Res. 1993;28:805–17.CrossRefGoogle Scholar
  28. 28.
    United States Environmental Protection Agency. Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. http://www.epa.gov/ogwdw000/disinfection/lt2/pdfs/guide_lt2_uvguidance.pdf; 2006 Nov pp. 1–436.
  29. 29.
    Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101.CrossRefGoogle Scholar
  30. 30.
    Sant SB, Gill KS, Burrell RE. Nanostructure, dissolution and morphology characteristics of microcidal silver films deposited by magnetron sputtering. Acta Biomater. 2007;3:341–50.CrossRefGoogle Scholar
  31. 31.
    Crowley DJ, Courcelle J. Answering the call: coping with DNA damage at the most inopportune time. J Biomed Biotechnol. 2002;2:66–74.CrossRefGoogle Scholar
  32. 32.
    Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev. 2007;31:637–56.CrossRefGoogle Scholar
  33. 33.
    Gallardo-Moreno AM, Pacha-Olivenza MA, Fernández-Calderon M-C, Pérez-Giraldo C, Bruque JM, González-Martín M-L. Bactericidal behaviour of Ti6Al4V surfaces after exposure to UV-C light. Biomaterials. 2010;31:5159–68.CrossRefGoogle Scholar
  34. 34.
    Lilja M, Forsgren J, Welch K, Åstrand M, Engqvist H, Strømme M. Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation. Biotechnol Lett. 2012;34:2299–305.CrossRefGoogle Scholar
  35. 35.
    Cooper VS, Bennett AF, Lenski RE. Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution. 2001;55:889–96.CrossRefGoogle Scholar
  36. 36.
    Guillobel H, Leitão AC. Characterization of Staphylococcus epidermidis mutants sensitive to ultraviolet radiation. Mutat Res. 1988;193:1–10.Google Scholar
  37. 37.
    Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci. 2004;275:177–82.Google Scholar
  38. 38.
    Gao A, Hang R, Huang X, Zhao L, Zhang X, Wang L, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35:4223–35.CrossRefGoogle Scholar
  39. 39.
    Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.CrossRefGoogle Scholar
  40. 40.
    Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B. 2009;79:340–4.CrossRefGoogle Scholar
  41. 41.
    Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine. 2012;8:916–24.CrossRefGoogle Scholar
  42. 42.
    Qin H, Cao H, Zhao Y, Zhu C, Cheng T, Wang Q, et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials. 2014;35:9114–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Erik Unosson
    • 1
  • Matthias Morgenstern
    • 1
  • Håkan Engqvist
    • 1
  • Ken Welch
    • 2
  1. 1.Division of Applied Materials Science, Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations