Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicroside and hydroxytyrosol

  • Qingxia Guan
  • Shuang Sun
  • Xiuyan Li
  • Shaowa Lv
  • Ting Xu
  • Jialin Sun
  • Wenjing Feng
  • Liang Zhang
  • Yongji Li
Delivery Systems Original Research
Part of the following topical collections:
  1. Delivery Systems


This study investigated the therapeutic efficiency of monomethoxy polyethylene glycol-poly(lactic-co-glycolic acid) (mPEG-PLGA) co-loaded with syringopicroside and hydroxytyrosol as a drug with effective targeting and loading capacity as well as persistent circulation in vivo. The nanoparticles were prepared using a nanoprecipitation method with mPEG-PLGA as nano-carrier co-loaded with syringopicroside and hydroxytyrosol (SH-NPs). The parameters like in vivo pharmacokinetics, biodistribution in vivo, fluorescence in vivo endomicroscopy, and cellular uptake of SH-NPs were investigated. Results showed that the total encapsulation efficiency was 32.38 ± 2.76 %. Total drug loading was 12.01 ± 0.42 %, particle size was 91.70 ± 2.11 nm, polydispersity index was 0.22 ± 0.01, and zeta potential was −24.5 ± 1.16 mV for the optimized SH-NPs. The nanoparticle morphology was characterized using transmission electron microscopy, which indicated that the particles of SH-NPs were in uniformity within the nanosize range and of spherical core shell morphology. Drug release followed Higuchi kinetics. Compared with syringopicroside and hydroxytyrosol mixture (SH), SH-NPs produced drug concentrations that persisted for a significantly longer time in plasma following second-order kinetics. The nanoparticles moved gradually into the cell, thereby increasing the quantity. ALT, AST, and MDA levels were significantly lower on exposure to SH-NPs than in controls. SH-NPs could inhibit the proliferation of HepG2.2.15 cells and could be taken up by HepG2.2.15 cells. The results confirmed that syringopicroside and hydroxytyrosol can be loaded simultaneously into mPEG-PLGA nanoparticles. Using mPEG-PLGA as nano-carrier, sustained release, high distribution in the liver, and protective effects against hepatic injury were observed in comparison to SH.


Drug Release Zeta Potential Cellular Uptake Drug Loading Entrapment Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







Syringopicroside and hydroxytyrosol


Nanoparticles co-loaded with syringopicroside and hydroxytyrosol

t1/2 α

Alpha elimination half-life

t1/2 β

Beta elimination half-life




Area under the concentration–time curve



We acknowledge Specialized Research Fund for the Doctoral Program of Higher Education (20112327110009) and the National Natural Science Foundation of China (81274091) for the Grants received in support of this research.

Compliance with ethical standards


The authors report no conflicts of interest in this work.


  1. 1.
    Wang F, Wen YJ, Niu JQ, Jiang WC, Xu C, Cai Z. Experimental studies of the phamacologic and toxical effects of the dingxiangye tablet. Chin J Clin Hepatol. 2000;14:94–6.Google Scholar
  2. 2.
    Fang J, Zhang XW, Li YJ, Wang YH, Wamg LM. Experimental study on Syringopicroside anti duck hepatitis B virus. Inf Tradit Chin Med. 2011;28:133–4.Google Scholar
  3. 3.
    Pan S, Liu L, Pan H, Ma Y, Wang D, Kang K, et al. Protective effects of hydroxytyrosol on liver ischemia/reperfusion injury in mice. Mol Nutr Food Res. 2013;57(7):1218–27. doi: 10.1002/mnfr.201300010.CrossRefGoogle Scholar
  4. 4.
    Zhang X, Cao J, Jiang L, Geng C, Zhong L. Protective effect of hydroxytyrosol against acrylamide-induced cytotoxicity and DNA damage in HepG2 cells. Mutat Res. 2009;664(1–2):64–8. doi: 10.1016/j.mrfmmm.2009.02.013.CrossRefGoogle Scholar
  5. 5.
    Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, et al. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release. 2014;183:77–86. doi: 10.1016/j.jconrel.2014.03.026.CrossRefGoogle Scholar
  6. 6.
    Chen W, Hu S. Suitable carriers for encapsulation and distribution of endostar: comparison of endostar-loaded particulate carriers. Int J Nanomed. 2011;6:1535–41. doi: 10.2147/ijn.s21881.Google Scholar
  7. 7.
    Wang C, Pham PT. Polymers for viral gene delivery. Expert Opin Drug Deliv. 2008;5(4):385–401. doi: 10.1517/17425247.5.4.385.CrossRefGoogle Scholar
  8. 8.
    Baimark Y, Srisuwan Y. Biodegradable nanoparticles of methoxy poly(ethylene glycol)-b-poly(d, l-lactide)/methoxy poly(ethylene glycol)- b-poly(-caprolactone) blends for drug delivery. Nanoscale Res Lett. 2012;7(1):271. doi: 10.1186/1556-276x-7-271.CrossRefGoogle Scholar
  9. 9.
    Bilati U, Allemann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24(1):67–75. doi: 10.1016/j.ejps.2004.09.011.CrossRefGoogle Scholar
  10. 10.
    Deng L, Sun D, Zhang Y, Huo J, Yuan Y, Dong A. Studies on paclitaxel-loaded methoxy poly (ethylene glycol)/poly (l-lactic acid) diblock copolymer nanoparticles. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005;22(4):715–8.Google Scholar
  11. 11.
    Ferenz KB, Waack IN, Mayer C, de Groot H, Kirsch M. Long-circulating poly(ethylene glycol)-coated poly(lactid-co-glycolid) microcapsules as potential carriers for intravenously administered drugs. J Microencapsul. 2013;30(7):632–42. doi: 10.3109/02652048.2013.770098.CrossRefGoogle Scholar
  12. 12.
    Wei K, Peng X, Zou F. Folate-decorated PEG-PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery. Int J Pharm. 2014;464(1–2):225–33. doi: 10.1016/j.ijpharm.2013.12.047.CrossRefGoogle Scholar
  13. 13.
    Khalil NM, do Nascimento TC, Casa DM, Dalmolin LF, de Mattos AC, Hoss I, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces. 2013;101:353–60. doi: 10.1016/j.colsurfb.2012.06.024.CrossRefGoogle Scholar
  14. 14.
    Liu P, Qin L, Wang Q, Sun Y, Zhu M, Shen M, et al. cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer. Biomaterials. 2012;33(28):6739–47. doi: 10.1016/j.biomaterials.2012.06.008.CrossRefGoogle Scholar
  15. 15.
    Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine. 2009;5(4):410–8. doi: 10.1016/j.nano.2009.02.002.CrossRefGoogle Scholar
  16. 16.
    Duan Y, Xu S, Wang Q, Liu J, Zhang Z. Optimization of preparation of DHAQ-loaded PEG-PLGA-PEG nonaparticles using central composite design. J Mater Sci Mater Med. 2006;17(6):559–63. doi: 10.1007/s10856-006-8940-4.CrossRefGoogle Scholar
  17. 17.
    Kumar R, Kulkarni A, Nabulsi J, Nagesha DK, Cormack R, Makrigiorgos MG, et al. Facile synthesis of PEGylated PLGA nanoparticles encapsulating doxorubicin and its in vitro evaluation as potent drug delivery vehicle. Drug Deliv Transl Res. 2013;3(4):299–308. doi: 10.1007/s13346-012-0124-9.CrossRefGoogle Scholar
  18. 18.
    Yuan Y, Sun YN, Lu CH. Study on the biological characteristics and mechanism of nanometer drugs. China Pharmacol Bull. 2013;29:1180–4.Google Scholar
  19. 19.
    Simsek S, Eroglu H, Kurum B, Ulubayram K. Brain targeting of Atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles. J Microencapsul. 2013;30(1):10–20. doi: 10.3109/02652048.2012.692400.CrossRefGoogle Scholar
  20. 20.
    Tang L, Azzi J, Kwon M, Mounayar M, Tong R, Yin Q, et al. Immunosuppressive activity of size-controlled PEG-PLGA nanoparticles containing encapsulated cyclosporine A. J Transplant. 2012;2012:896141. doi: 10.1155/2012/896141.CrossRefGoogle Scholar
  21. 21.
    Yang A, Yang L, Liu W, Li Z, Xu H, Yang X. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Int J Pharm. 2007;331(1):123–32. doi: 10.1016/j.ijpharm.2006.09.015.CrossRefGoogle Scholar
  22. 22.
    Zhang K, Lv S, Li X, Feng Y, Li X, Liu L, et al. Preparation, characterization, and in vivo pharmacokinetics of nanostructured lipid carriers loaded with oleanolic acid and gentiopicrin. Int J Nanomed. 2013;8:3227–39. doi: 10.2147/ijn.s45031.CrossRefGoogle Scholar
  23. 23.
    Jain S, Rathi VV, Jain AK, Das M, Godugu C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine (Lond). 2012;7(9):1311–37. doi: 10.2217/nnm.12.31.CrossRefGoogle Scholar
  24. 24.
    Hu S, Zhang Y. Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo evaluation. Int J Nanomed. 2010;5:1039–48. doi: 10.2147/ijn.s14753.CrossRefGoogle Scholar
  25. 25.
    Li T, Yan Z, Zhou C, Sun J, Jiang C, Yang X. Simultaneous quantification of paeoniflorin, nobiletin, tangeretin, liquiritigenin, isoliquiritigenin, liquiritin and formononetin from Si-Ni-San extract in rat plasma and tissues by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2013;27(8):1041–53. doi: 10.1002/bmc.2904.Google Scholar
  26. 26.
    Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32(31):8010–20. doi: 10.1016/j.biomaterials.2011.07.004.CrossRefGoogle Scholar
  27. 27.
    Goetz M, Kiesslich R, Dienes HP, Drebber U, Murr E, Hoffman A, et al. In vivo confocal laser endomicroscopy of the human liver: a novel method for assessing liver microarchitecture in real time. Endoscopy. 2008;40(7):554–62. doi: 10.1055/s-2008-1077296.CrossRefGoogle Scholar
  28. 28.
    Goetz M, Thomas S, Heimann A, Delaney P, Schneider C, Relle M, et al. Dynamic in vivo imaging of microvasculature and perfusion by miniaturized confocal laser microscopy. Eur Surg Res. 2008;41(3):290–7. doi: 10.1159/000148242.CrossRefGoogle Scholar
  29. 29.
    Goetz M, Wang TD. Molecular imaging in gastrointestinal endoscopy. Gastroenterology. 2010;138(3):828–33. doi: 10.1053/j.gastro.2010.01.009.CrossRefGoogle Scholar
  30. 30.
    Mahmoud MF, Hamdan DI, Wink M, El-Shazly AM. Hepatoprotective effect of limonin, a natural limonoid from the seed of Citrus aurantium var. bigaradia, on D-galactosamine-induced liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(3):251–61. doi: 10.1007/s00210-013-0937-1.CrossRefGoogle Scholar
  31. 31.
    Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281–90. doi: 10.1016/j.biomaterials.2011.07.032.CrossRefGoogle Scholar
  32. 32.
    Pamujula S, Hazari S, Bolden G, Graves RA, Chinta DD, Dash S, et al. Cellular delivery of PEGylated PLGA nanoparticles. J Pharm Pharmacol. 2012;64(1):61–7. doi: 10.1111/j.2042-7158.2011.01376.x.CrossRefGoogle Scholar
  33. 33.
    Brgles M, Jurasin D, Sikiric MD, Frkanec R, Tomasic J. Entrapment of ovalbumin into liposomes—factors affecting entrapment efficiency, liposome size, and zeta potential. J Liposome Res. 2008;18(3):235–48. doi: 10.1080/08982100802312762.CrossRefGoogle Scholar
  34. 34.
    Gajendiran M, Gopi V, Elangovan V, Murali RV, Balasubramanian S. Isoniazid loaded core shell nanoparticles derived from PLGA-PEG-PLGA tri-block copolymers: in vitro and in vivo drug release. Colloids Surf B Biointerfaces. 2013;104:107–15. doi: 10.1016/j.colsurfb.2012.12.008.CrossRefGoogle Scholar
  35. 35.
    Chaung SS, Lin CC, Lin J, Yu KH, Hsu YF, Yen MH. The hepatoprotective effects of Limonium sinense against carbon tetrachloride and beta-d-galactosamine intoxication in rats. Phytother Res. 2003;17(7):784–91. doi: 10.1002/ptr.1236.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Qingxia Guan
    • 1
  • Shuang Sun
    • 1
  • Xiuyan Li
    • 1
  • Shaowa Lv
    • 1
  • Ting Xu
    • 1
  • Jialin Sun
    • 1
  • Wenjing Feng
    • 1
  • Liang Zhang
    • 1
  • Yongji Li
    • 1
  1. 1.College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina

Personalised recommendations