Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration

  • M. L. Flores-Cedillo
  • K. N. Alvarado-Estrada
  • A. J. Pozos-Guillén
  • J. S. Murguía-Ibarra
  • M. A. Vidal
  • J. M. Cervantes-Uc
  • R. Rosales-Ibáñez
  • J. V. Cauich-Rodríguez
Engineering and Nano-engineering Approaches for Medical Devices Original Research
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices


Conventional approaches to bone regeneration rarely use multiwall carbon nanotubes (MWCNTs) but instead use polymeric matrices filled with hydroxyapatite, calcium phosphates and bioactive glasses. In this study, we prepared composites of MWCNTs/polycaprolactone (PCL) for bone regeneration as follows: (a) MWCNTs randomly dispersed on PCL, (b) MWCNTs aligned with an electrical field to determine if the orientation favors the growing of human dental pulp stem cells (HDPSCs), and (c) MWCNTs modified with β-glycerol phosphate (BGP) to analyze its osteogenic potential. Raman spectroscopy confirmed the presence of MWCNTs and BGP on PCL, whereas the increase in crystallinity by the addition of MWCNTs to PCL was confirmed by X-ray diffraction and differential scanning calorimetry. A higher elastic modulus (608 ± 4.3 MPa), maximum stress (42 ± 6.1 MPa) and electrical conductivity (1.67 × 10−7 S/m) were observed in non-aligned MWCNTs compared with the pristine PCL. Cell viability at 14 days was similar in all samples according to the live/dead assay, but the 21 day cell proliferation, measured by MTT was higher in MWCNTs aligned with BGP. Von Kossa and Alizarin red showed larger amounts of mineral deposits on MWCNTs aligned with BGP, indicating that at 21 days, this scaffold promotes osteogenic differentiation of HDPSCs.


Contact Angle Osteogenic Differentiation Bioactive Glass Bone Tissue Regeneration Spherulite Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M. L. Flores-Cedillo thanks CONACYT for a PhD grant (290748) and research grant 266123. The technical assistance of R. F. Vargas-Coronado, A. May-Pat and A. I. Oliva-Aviles of CICY, and J. Delgado-García and A. Martínez-Borquez of DCIUGTO is also acknowledgments.

Supplementary material

Supplementary material 1 (AVI 1848 kb)


  1. 1.
    Laurencin CT, Ambrosio AMA, Borden MD, Cooper JA Jr. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1:19–46.CrossRefGoogle Scholar
  2. 2.
    Cattalini JP, Boccaccini AR, Lucangioli S, Mouriño V. Bisphosphonate-based strategies for bone tissue engineering and orthopedic implants. Tissue Eng Part B Rev. 2012;18:323–40.CrossRefGoogle Scholar
  3. 3.
    Kolk A, Handschel J, Drescher W, et al. Current trends and future perspectives of bone substitute materials—from space holders to innovative biomaterials. J Cranio-Maxillofac Surg. 2012;40:706–18.CrossRefGoogle Scholar
  4. 4.
    Barradas A, Yuan H, Blitterswijk CA, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21:407–29.Google Scholar
  5. 5.
    Saxena AK. Tissue engineering: present concepts and strategies. J Indian Assoc Pediatr Surg. 2005;10:14.CrossRefGoogle Scholar
  6. 6.
    Westhrin M, Xie M, Olderøy MØ, Sikorski P, Strand BL, Standal T. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices. PLoS One. 2015;10:e0120374.CrossRefGoogle Scholar
  7. 7.
    Kim H-W, Lee E-J, Kim H-E, Salih V, Knowles JC. Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. Biomaterials. 2005;26:4395–404.CrossRefGoogle Scholar
  8. 8.
    Baykan E, Koc A, Elcin AE, Elcin YM. Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering: in vitro and in vivo studies. Biointerphases. 2014;9:029011.CrossRefGoogle Scholar
  9. 9.
    Kim H-W, Lee E-J, Jun I-K, Kim H-E, Knowles JC. Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration. J Biomed Mater Res B Appl Biomater. 2005;75B:34–41.CrossRefGoogle Scholar
  10. 10.
    Chen J, Que W, Xing Y, Lei B. Molecular level-based bioactive glass-poly (caprolactone) hybrids monoliths with porous structure for bone tissue repair. Ceram Int. 2015;41:3330–4.CrossRefGoogle Scholar
  11. 11.
    Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect. 2007;115:1125–31.CrossRefGoogle Scholar
  12. 12.
    Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–56.CrossRefGoogle Scholar
  13. 13.
    Pan L, Pei X, He R, Wan Q, Wang J. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf B Biointerfaces. 2012;93:226–34.CrossRefGoogle Scholar
  14. 14.
    Dorj B, Won J-E, Kim J-H, Choi S-J, Shin US, Kim H-W. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. J Biomed Mater Res A. 2013;101A:1670–81.CrossRefGoogle Scholar
  15. 15.
    Wesełucha-Birczyńska A, Świętek M, Sołtysiak E, et al. Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells. Analyst. 2015;140:2311–20.CrossRefGoogle Scholar
  16. 16.
    Holmes B, Fang X, Zarate A, Keidar M, Zhang LG. Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon. 2016;97:1–13.CrossRefGoogle Scholar
  17. 17.
    Kharaziha M, Shin SR, Nikkhah M, et al. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35:7346–54.CrossRefGoogle Scholar
  18. 18.
    Lee J-R, Ryu S, Kim S, Kim B-S. Behaviors of stem cells on carbon nanotube. Biomater Res. 2015;19:3–6.CrossRefGoogle Scholar
  19. 19.
    Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–5.CrossRefGoogle Scholar
  20. 20.
    Avilés F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon. 2009;47:2970–5.CrossRefGoogle Scholar
  21. 21.
    Oliva-Avilés AI, Avilés F, Sosa V. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon. 2011;49:2989–97.CrossRefGoogle Scholar
  22. 22.
    Crescenzi V, Manzini G, Calzolari G, Borri C. Thermodynamics of fusion of poly-β-propiolactone and poly-ϵ-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J. 1972;8:449–63.CrossRefGoogle Scholar
  23. 23.
    Guzmán-Uribe D, Estrada KN, Guillén Ade J, Pérez SM, Ibáñez RR. Development of a three-dimensional tissue construct from dental human ectomesenchymal stem cells. in vitro and in vivo study. Open Dent J. 2012;6:226–34.CrossRefGoogle Scholar
  24. 24.
    Yu-Young J, Hee-Jung L, Sun-Young K, Han-Wool Ch, Joo-Young P, Jong-Hoon Ch, Yun-Hoon Ch, Eun-Suk K, Hyeong-Cheol Y, Pill-Hoon Ch. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13:767–73.CrossRefGoogle Scholar
  25. 25.
    He Y, Inoue Y. Novel FTIR method for determining the crystallinity of poly(ε-caprolactone). Polym Int. 2000;49:623–6.CrossRefGoogle Scholar
  26. 26.
    Zhang D, Shi L, Fang J, Li X, Dai K. Preparation and modification of carbon nanotubes. Mater Lett. 2005;59:4044–7.CrossRefGoogle Scholar
  27. 27.
    Lee H-H, Shin US, Jin G-Z, Kim H-W. Highly homogeneous carbon nanotube-polycaprolactone composites with various and controllable concentrations of ionically-modified-MWCNTs. Bull Korean Chem Soc. 2011;32:157–61.CrossRefGoogle Scholar
  28. 28.
    ISO 10993-5:2009—biological evaluation of medical devices—Part 5: tests for in vitro cytotoxicity. Accessed 11 October 2015.
  29. 29.
    Stoddart MJ, editor. Cytotoxicity testing: measuring viable cells, dead cells, and detecting mechanism of cell death—Springer. In: Methods in molecular biology. Humana Press; 2011. Accessed 11 October 2015.
  30. 30.
    López-García J, Lehocký M, Humpolíček P, Sáha P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater. 2014;5:43–57.CrossRefGoogle Scholar
  31. 31.
    Abarrategi A, Gutiérrez MC, Moreno-Vicente C, et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials. 2008;29:94–102.CrossRefGoogle Scholar
  32. 32.
    Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res. 2002;35:1035–44.CrossRefGoogle Scholar
  33. 33.
    Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28:344–53.CrossRefGoogle Scholar
  34. 34.
    Ding L, Jiang H, Stilwell J, Selegue JP, Zhang T, Cooke PA, Elboudwarej O, Gray JW, Che FF. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 2005;5:2448–64.CrossRefGoogle Scholar
  35. 35.
    Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun. 2005;5:571.CrossRefGoogle Scholar
  36. 36.
    Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R. Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res. 2002;59:499–506.CrossRefGoogle Scholar
  37. 37.
    Qazi TH, Rai R, Boccaccini AR. Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials. 2014;35:9068–86.CrossRefGoogle Scholar
  38. 38.
    Bautista-Quijano JR, Avilés F, Cauich-Rodriguez JV. Sensing of large strain using multiwall carbon nanotube/segmented polyurethane composites. J Appl Polym Sci. 2013;130:375–82.CrossRefGoogle Scholar
  39. 39.
    Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro. 2004;18:703–10.CrossRefGoogle Scholar
  40. 40.
    Bonewald LF, Harris SE, Rosser J, et al. Von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int. 2003;72:537–47.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. L. Flores-Cedillo
    • 1
  • K. N. Alvarado-Estrada
    • 1
  • A. J. Pozos-Guillén
    • 1
  • J. S. Murguía-Ibarra
    • 2
  • M. A. Vidal
    • 3
  • J. M. Cervantes-Uc
    • 4
  • R. Rosales-Ibáñez
    • 1
  • J. V. Cauich-Rodríguez
    • 4
  1. 1.Facultad de Estomatología, Laboratorio de Ciencias BásicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias, Departamento de ElectrónicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Centro de Aplicación de Radiación Infrarroja, Energías Alternativas y MaterialesCIACYTSan Luis PotosíMexico
  4. 4.Centro de Investigación Científica de YucatánUnidad de MaterialesMéridaMexico

Personalised recommendations