Advertisement

Effect of stents coated with a combination of sirolimus and alpha-lipoic acid in a porcine coronary restenosis model

  • Kyung Seob Lim
  • Jun-Kyu Park
  • Myung Ho Jeong
  • In-Ho Bae
  • Jae-Woon Nah
  • Dae Sung Park
  • Jong Min Kim
  • Jung Ha Kim
  • So Youn Lee
  • Eun Jae Jang
  • Suyoung Jang
  • Hyun Kuk Kim
  • Doo Sun Sim
  • Keun-Ho Park
  • Young Joon Hong
  • Youngkeun Ahn
  • Jung Chaee Kang
Engineering and Nano-engineering Approaches for Medical Devices Original Research
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices

Abstract

The aim of this study was to evaluate antiproliferative sirolimus- and antioxidative alpha-lipoic acid (ALA)-eluting stents using biodegradable polymer [poly-l-lactic acid (PLA)] in a porcine coronary overstretch restenosis model. Forty coronary arteries of 20 pigs were randomized into four groups in which the coronary arteries had a bare metal stent (BMS, n = 10), ALA-eluting stent with PLA (AES, n = 10), sirolimus-eluting stent with PLA (SES, n = 10), or sirolimus- and ALA-eluting stent with PLA (SAS, n = 10). A histopathological analysis was performed 28 days after the stenting. The ALA and sirolimus released slowly over 30 days. There were no significant differences between groups in the injury or inflammation score; however, there were significant differences in the percent area of stenosis (56.2 ± 11.78 % in BMS vs. 51.5 ± 12.20 % in AES vs. 34.7 ± 7.23 % in SES vs. 28.7 ± 7.30 % in SAS, P < 0.0001) and fibrin score [1.0 (range 1.0–1.0) in BMS vs. 1.0 (range 1.0–1.0) in AES vs. 2.0 (range 2.0–2.0) in SES vs. 2.0 (range 2.0–2.0) in SAS, P < 0.0001] between the four groups. The percent area of stenosis based on micro-computed tomography corresponded with the restenosis rates based on histopathological stenosis in different proportions in the four groups (54.8 ± 7.88 % in BMS vs. 50.4 ± 14.87 % in AES vs. 34.5 ± 7.22 % in SES vs. 28.9 ± 7.22 % in SAS, P < 0.05). SAS showed a better neointimal inhibitory effect than BMS, AES, and SES at 1 month after stenting in a porcine coronary restenosis model. Therefore, SAS with PLA can be a useful drug combination for coronary stent coating to suppress neointimal hyperplasia.

Keywords

Sirolimus Abciximab Bare Metal Stent Neointimal Hyperplasia Late Stent Thrombosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by a grant from the Korea Healthcare Technology R&D Project (HI13C1527), Ministry of Health and Welfare, Republic of Korea. The funders had no role in the study design, data collection and analysis processes, decision to publish, or manuscript preparation.

References

  1. 1.
    Stettler C, Wandel S, Allemann S, Kastrati A, Morice MC, Schomig A, Pfisterer ME, Stone GW, Leon MB, de Lezo JS, Goy JJ, Park SJ, Sabate M, Suttorp MJ, Kelbaek H, Spaulding C, Menichelli M, Vermeersch P, Dirksen MT, Cervinka P, Petronio AS, Nordmann AJ, Diem P, Meier B, Zwahlen M, Reichenbach S, Trelle S, Windecker S, Juni P. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet. 2007;370(9591):937–48.CrossRefGoogle Scholar
  2. 2.
    Stone GW, Moses JW, Ellis SG, Schofer J, Dawkins KD, Morice MC, Colombo A, Schampaert E, Grube E, Kirtane AJ, Cutlip DE, Fahy M, Pocock SJ, Mehran R, Leon MB. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med. 2007;356(10):998–1008.CrossRefGoogle Scholar
  3. 3.
    Pendyala LK, Li J, Shinke T, Geva S, Yin X, Chen JP, King SB 3rd, Robinson KA, Chronos NA, Hou D. Endothelium-dependent vasomotor dysfunction in pig coronary arteries with Paclitaxel-eluting stents is associated with inflammation and oxidative stress. JACC Cardiovasc Interv. 2009;2(3):253–62.CrossRefGoogle Scholar
  4. 4.
    Finn AV, Nakazawa G, Joner M, Kolodgie FD, Mont EK, Gold HK, Virmani R. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc Biol. 2007;27(7):1500–10.CrossRefGoogle Scholar
  5. 5.
    Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, Mihalcsik L, Tespili M, Valsecchi O, Kolodgie FD. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109(6):701–5.CrossRefGoogle Scholar
  6. 6.
    Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48(1):193–202.CrossRefGoogle Scholar
  7. 7.
    Cook S, Ladich E, Nakazawa G, Eshtehardi P, Neidhart M, Vogel R, Togni M, Wenaweser P, Billinger M, Seiler C, Gay S, Meier B, Pichler WJ, Juni P, Virmani R, Windecker S. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation. 2009;120(5):391–9.CrossRefGoogle Scholar
  8. 8.
    Nakazawa G, Finn AV, Joner M, Ladich E, Kutys R, Mont EK, Gold HK, Burke AP, Kolodgie FD, Virmani R. Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. Circulation. 2008;118(11):1138–45.CrossRefGoogle Scholar
  9. 9.
    Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, Komori H, Tsuji T, Motohara S, Uehata H. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation. 2000;102(4):399–404.CrossRefGoogle Scholar
  10. 10.
    Nishio S, Kosuga K, Igaki K, Okada M, Kyo E, Tsuji T, Takeuchi E, Inuzuka Y, Takeda S, Hata T, Takeuchi Y, Kawada Y, Harita T, Seki J, Akamatsu S, Hasegawa S, Bruining N, Brugaletta S, de Winter S, Muramatsu T, Onuma Y, Serruys PW, Ikeguchi S. Long-term (>10 years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents. Circulation. 2012;125(19):2343–53.CrossRefGoogle Scholar
  11. 11.
    Ahmed TA, Bergheanu SC, Stijnen T, Plevier JW, Quax PH, Jukema JW. Clinical performance of drug-eluting stents with biodegradable polymeric coating: a meta-analysis and systematic review. Euro Interv. 2011;7(4):505–16.Google Scholar
  12. 12.
    Klauss V, Serruys PW, Pilgrim T, Buszman P, Linke A, Ischinger T, Eberli F, Corti R, Wijns W, Morice MC, di Mario C, van Geuns RJ, van Es GA, Kalesan B, Wenaweser P, Juni P, Windecker S. 2-Year clinical follow-up from the randomized comparison of biolimus-eluting stents with biodegradable polymer and sirolimus-eluting stents with durable polymer in routine clinical practice. JACC Cardiovasc Interv. 2011;4(8):887–95.CrossRefGoogle Scholar
  13. 13.
    Packer L, Witt EH, Tritschler HJ. Alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19(2):227–50.CrossRefGoogle Scholar
  14. 14.
    Bae IH, Lim KS, Park JK, Park DS, Lee SY, Jang EJ, Ji MS, Sim DS, Hong YJ, Ahn Y, Park JC, Cho JG, Kang JC, Kim IS, Nah JW, Jeong MH. Mechanical behavior and in vivo properties of newly designed bare metal stent for enhanced flexibility. J Ind Eng Chem. 2015;21:1295–300.CrossRefGoogle Scholar
  15. 15.
    Lim KS, Bae IH, Kim JH, Park DS, Kim JM, Kim JH, Sim DS, Hong YJ, Jeong MH. Mechanical and histopathological comparison between commercialized and newly designed coronary bare metal stents in a porcine coronary restenosis model. Chonnam Med J. 2013;49(1):7–13.CrossRefGoogle Scholar
  16. 16.
    Ma X, Oyamada S, Gao F, Wu T, Robich MP, Wu H, Wang X, Buchholz B, McCarthy S, Gu Z, Bianchi CF, Sellke FW, Laham R. Paclitaxel/sirolimus combination coated drug-eluting stent: in vitro and in vivo drug release studies. J Pharm Biomed Anal. 2011;54(4):807–11.CrossRefGoogle Scholar
  17. 17.
    Lim KS, Park JK, Jeong MH, Bae IH, Nah J, Park DS, Kim JM, Kim JH, Lee SY, Jang EJ, Kim NY, Sim DS, Park KH, Hong YJ, Ahn Y, Kang JC. Biodegradable polymer-based sirolimus coating stent in a porcine coronary restenosis model. Clin Exp Thromb Hemost. 2014;1(2):59–65.CrossRefGoogle Scholar
  18. 18.
    Schwartz RS, Huber KC, Murphy JG, Edwards WD, Camrud AR, Vlietstra RE, Holmes DR. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol. 1992;19(2):267–74.CrossRefGoogle Scholar
  19. 19.
    Che HL, Bae IH, Lim KS, Song IT, Lee H, Muthiah M, Namgung R, Kim WJ, Kim DG, Ahn Y, Jeong MH, Park IK. Suppression of post-angioplasty restenosis with an Akt1 siRNA-embedded coronary stent in a rabbit model. Biomaterials. 2012;33(33):8548–56.CrossRefGoogle Scholar
  20. 20.
    Schwartz RS, Edelman E, Virmani R, Carter A, Granada JF, Kaluza GL, Chronos NA, Robinson KA, Waksman R, Weinberger J, Wilson GJ, Wilensky RL. Drug-eluting stents in preclinical studies: updated consensus recommendations for preclinical evaluation. Circ Cardiovasc Interv. 2008;1(2):143–53.CrossRefGoogle Scholar
  21. 21.
    Suzuki T, Kopia G, Hayashi S, Bailey LR, Llanos G, Wilensky R, Klugherz BD, Papandreou G, Narayan P, Leon MB, Yeung AC, Tio F, Tsao PS, Falotico R, Carter AJ. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation. 2001;104(10):1188–93.CrossRefGoogle Scholar
  22. 22.
    Lim KS, Park JK, Jeong MH, Nah JW, Kim DG, Bae IH, Park DS, Kim JM, Kim JH, Cho DL, Sim DS, Park KH, Hong YJ, Ahn Y. Comparison of sirolimus loaded PLGA-PEG co-polymer coronary stent and bare metal stent in a porcine coronary restenosis model. Macromol Res. 2014;22(6):639–46.CrossRefGoogle Scholar
  23. 23.
    Kang SN, Kim SE, Choi J, Park K, Goo JH, Sim DS, Hong YJ, Kim JH, Joung YK, Lee J, Jeong MH, Han DK. Comparison of phytoncide with sirolimus as a novel drug candidate for drug-eluting stent. Biomaterials. 2015;44:1–10.CrossRefGoogle Scholar
  24. 24.
    Vert M. Biodegradable polymers and plastics Special publication, 109. Cambridge: Royal Society of Chemistry; 1992.Google Scholar
  25. 25.
    Rossi F, Casalini T, Raffa E, Masi M, Perale G. Bioresorbable polymer coated drug eluting stent: a model study. Mol Pharm. 2012;9(7):1898–910.CrossRefGoogle Scholar
  26. 26.
    Mehran R, Dangas G, Abizaid AS, Mintz GS, Lansky AJ, Satler LF, Pichard AD, Kent KM, Stone GW, Leon MB. Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome. Circulation. 1999;100(18):1872–8.CrossRefGoogle Scholar
  27. 27.
    Gummert JF, Ikonen T, Morris RE. Newer immunosuppressive drugs: a review. J Am Soc Nephrol JASN. 1999;10(6):1366–80.Google Scholar
  28. 28.
    Park SJ, Kim YH, Lee BK, Lee SW, Lee CW, Hong MK, Kim JJ, Mintz GS, Park SW. Sirolimus-eluting stent implantation for unprotected left main coronary artery stenosis: comparison with bare metal stent implantation. J Am Coll Cardiol. 2005;45(3):351–6.CrossRefGoogle Scholar
  29. 29.
    Carter AJ, Aggarwal M, Kopia GA, Tio F, Tsao PS, Kolata R, Yeung AC, Llanos G, Dooley J, Falotico R. Long-term effects of polymer-based, slow-release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc Res. 2004;63(4):617–24.CrossRefGoogle Scholar
  30. 30.
    van Beusekom HM, Schwartz RS, van der Giessen WJ. Synthetic polymers. Semin Interv Cardiol SIIC. 1998;3(3–4):145–8.Google Scholar
  31. 31.
    van der Giessen WJ, Lincoff AM, Schwartz RS, van Beusekom HM, Serruys PW, Holmes DR Jr, Ellis SG, Topol EJ. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation. 1996;94(7):1690–7.CrossRefGoogle Scholar
  32. 32.
    van Beusekom HM, Serruys PW, van der Giessen WJ. Coronary stent coatings. Coron Artery Dis. 1994;5(7):590–6.CrossRefGoogle Scholar
  33. 33.
    Cassese S, Fusaro M, Byrne RA, Tada T, Hoppmann P, Joner M, Laugwitz KL, Schunkert H, Kastrati A. Clinical outcomes of patients treated with Nobori biolimus-eluting stent: meta-analysis of randomized trials. Int J Cardiol. 2014;175(3):484–91.CrossRefGoogle Scholar
  34. 34.
    Sabate M, Raber L, Heg D, Brugaletta S, Kelbaek H, Cequier A, Ostojic M, Iniguez A, Tuller D, Serra A, Baumbach A, von Birgelen C, Hernandez-Antolin R, Roffi M, Mainar V, Valgimigli M, Serruys PW, Juni P, Windecker S. Comparison of newer-generation drug-eluting with bare-metal stents in patients with acute ST-segment elevation myocardial infarction: a pooled analysis of the EXAMINATION (clinical Evaluation of the Xience-V stent in Acute Myocardial INfArcTION) and COMFORTABLE-AMI (Comparison of Biolimus Eluted From an Erodible Stent Coating With Bare Metal Stents in Acute ST-Elevation Myocardial Infarction) trials. JACC Cardiovascular interventions. 2014;7(1):55–63.CrossRefGoogle Scholar
  35. 35.
    Palmerini T, Biondi-Zoccai G, Della Riva D, Mariani A, Sabate M, Smits PC, Kaiser C, D’Ascenzo F, Frati G, Mancone M, Genereux P, Stone GW. Clinical outcomes with bioabsorbable polymer- versus durable polymer-based drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2014;63(4):299–307.CrossRefGoogle Scholar
  36. 36.
    Gombotz WR, Pettit DK. Biodegradable polymers for protein and peptide drug delivery. Bioconjug Chem. 1995;6(4):332–51.CrossRefGoogle Scholar
  37. 37.
    Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25(26):5735–42.CrossRefGoogle Scholar
  38. 38.
    Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Bio Med. 1995;19(2):227–50.CrossRefGoogle Scholar
  39. 39.
    Sung MJ, Kim W, Ahn SY, Cho CH, Koh GY, Moon SO, Kim DH, Lee S, Kang KP, Jang KY, Park SK. Protective effect of alpha-lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circ Res. 2005;97(9):880–90.CrossRefGoogle Scholar
  40. 40.
    Lee KM, Park KG, Kim YD, Lee HJ, Kim HT, Cho WH, Kim HS, Han SW, Koh GY, Park JY, Lee KU, Kim JG, Lee IK. Alpha-lipoic acid inhibits fractalkine expression and prevents neointimal hyperplasia after balloon injury in rat carotid artery. Atherosclerosis. 2006;189(1):106–14.CrossRefGoogle Scholar
  41. 41.
    Kim HJ, Kim JY, Lee SJ, Oh CJ, Choi YK, Lee HJ, Do JY, Kim SY, Kwon TK, Choi HS, Lee MO, Park IS, Park KG, Lee KU, Lee IK. alpha-Lipoic acid prevents neointimal hyperplasia via induction of p38 mitogen-activated protein kinase/Nur77-mediated apoptosis of vascular smooth muscle cells and accelerates postinjury reendothelialization. Arterioscler Thromb Vasc Biol. 2010;30(11):2164–72.CrossRefGoogle Scholar
  42. 42.
    Lim SY, Bae EH, Jeong MH, Kim JH, Hong YJ, Sim DS, Kim YS, Park IK, Ahn Y, Song SJ, Cho DL, Kim KS, Kang JC. Effect of alpha lipoic acid in a porcine in-stent restenosis model. J Cardiol. 2009;54(3):375–85.CrossRefGoogle Scholar
  43. 43.
    Lim KS, Hong YJ, Hachinohe D, Ahmed K, Jeong MH, Kim JH, Sim DS, Lee MG, Park KH, Ahn Y, Cho JG, Park JC, Song SJ, Jung KW, Cho DL, Kang JC. Effect of a dual drug-coated stent with abciximab and alpha-lipoic Acid in a porcine coronary restenosis model. Korean Circ J. 2011;41(5):241–7.CrossRefGoogle Scholar
  44. 44.
    Malik N, Gunn J, Holt CM, Shepherd L, Francis SE, Newman CM, Crossman DC, Cumberland DC. Intravascular stents: a new technique for tissue processing for histology, immunohistochemistry, and transmission electron microscopy. Heart. 1998;80(5):509–16.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kyung Seob Lim
    • 1
    • 2
    • 3
  • Jun-Kyu Park
    • 5
  • Myung Ho Jeong
    • 1
    • 2
    • 3
    • 4
  • In-Ho Bae
    • 1
    • 2
  • Jae-Woon Nah
    • 5
  • Dae Sung Park
    • 2
    • 3
  • Jong Min Kim
    • 2
    • 3
  • Jung Ha Kim
    • 2
    • 3
  • So Youn Lee
    • 1
    • 2
  • Eun Jae Jang
    • 1
    • 2
  • Suyoung Jang
    • 2
    • 3
  • Hyun Kuk Kim
    • 2
    • 3
  • Doo Sun Sim
    • 2
    • 3
  • Keun-Ho Park
    • 2
    • 3
  • Young Joon Hong
    • 2
    • 3
  • Youngkeun Ahn
    • 2
    • 3
  • Jung Chaee Kang
    • 2
    • 3
  1. 1.Korea Cardiovascular Stent InstituteJangsungKorea
  2. 2.Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and WelfareGwangjuKorea
  3. 3.Cardiovascular Research CenterChonnam National University HospitalGwangjuKorea
  4. 4.Regeneromics Research CenterChonnam National UniversityGwangjuKorea
  5. 5.Department of Polymer Science and EngineeringSunchon National UniversitySunchonKorea

Personalised recommendations