Advertisement

45S5 Bioglass®–MWCNT composite: processing and bioactivity

  • Harshit Porwal
  • Mehdi EstiliEmail author
  • Alina Grünewald
  • Salvatore Grasso
  • Rainer Detsch
  • Chunfeng Hu
  • Yoshio Sakka
  • Aldo R. BoccacciniEmail author
  • Mike J. ReeceEmail author
Biomaterials Synthesis and Characterization
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization

Abstract

Multi-walled carbon nanotube (MWCNT)–Bioglass (BG) matrix composite was fabricated using a facile and scalable aqueous colloidal processing method without using any surfactants followed by spark plasma sintering (SPS) consolidation. The individual MWCNTs were initially uniformly dispersed in water and then entirely immobilized on the BG particles during the colloidal processing, avoiding their common re-agglomeration during the water-removal and drying step, which guaranteed their uniform dispersion within the dense BG matrix after the consolidation process. SPS was used as a fast sintering technique to minimise any damage to the MWCNT structure during the high-temperature consolidation process. The electrical conductivity of BG increased by 8 orders of magnitude with the addition of 6.35 wt% of MWCNTs compared to pure BG. Short-duration tests were used in the present study as a preliminary evaluation to understand the effect of incorporating MWCNTs on osteoblast-like cells. The analysed cell proliferation, viability and phenotype expression of MG-63 cells showed inhibition on 45S5 Bioglass®–MWCNT composite surfaces.

Keywords

Spark Plasma Sinter Pristine MWCNTs Bone Scaffold Colloidal Processing MWCNT Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank European Union’s Seventh Framework Program managed by REA-Research Executive Agency http://ec.europa.eu/research/rea (Marie Curie Action, GlaCERCo GA 264526) and International Center for Young Scientists (ICYS) of National Institute for Materials Science (NIMS), Tsukuba, Japan for their support and funding for this research. Prof. M.J. Reece would like to acknowledge the support of Sunchon National University, South Korea, through the BK21 + programme.

References

  1. 1.
    Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11):2757–74. doi: 10.1016/j.biomaterials.2011.01.004.CrossRefGoogle Scholar
  2. 2.
    Shuai CJ, Gao CD, Feng P, Peng SP. Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering. Rsc Adv. 2014;4(25):12782–8. doi: 10.1039/C3ra47862a.CrossRefGoogle Scholar
  3. 3.
    Woodruff MA, Lange C, Reichert J, Berner A, Chen FL, Fratzl P, et al. Bone tissue engineering: from bench to bedside. Mater Today. 2012;15(10):430–5.CrossRefGoogle Scholar
  4. 4.
    Jones JR. New trends in bioactive scaffolds: The importance of nanostructure. J Eur Ceram Soc. 2009;29(7):1275–81. doi: 10.1016/j.jeurceramsoc.2008.08.003.CrossRefGoogle Scholar
  5. 5.
    Hench LL. Bioceramics—from Concept to Clinic. J Am Ceram Soc. 1991;74(7):1487–510. doi: 10.1111/j.1151-2916.1991.tb07132.x.CrossRefGoogle Scholar
  6. 6.
    Chen QZ, Efthymiou A, Salih V, Boccaccini AR. Bioglass®-derived glass–ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. J Biomed Mater Res A. 2008;84A(4):1049–60. doi: 10.1002/jbm.a.31512.CrossRefGoogle Scholar
  7. 7.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Bioph Res Co. 2000;276(2):461–5. doi: 10.1006/bbrc.2000.3503.CrossRefGoogle Scholar
  8. 8.
    Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, et al. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials. 2004;25(27):5857–66. doi: 10.1016/j.biomaterials.2004.01.043.CrossRefGoogle Scholar
  9. 9.
    Zhang D, Lepparanta O, Munukka E, Ylanen H, Viljanen MK, Eerola E, et al. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A. 2010;93A(2):475–83. doi: 10.1002/Jbm.A.32564.Google Scholar
  10. 10.
    Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B-Rev. 2010;16(2):199–207. doi: 10.1089/ten.teb.2009.0416.CrossRefGoogle Scholar
  11. 11.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res A. 1971;5(6):117.CrossRefGoogle Scholar
  12. 12.
    Hench LL. The story of Bioglass (R). J Mater Sci-Mater M. 2006;17(11):967–78. doi: 10.1007/s10856-006-0432-z.CrossRefGoogle Scholar
  13. 13.
    Anderson AB, Dallmier AW, Chudzik SJ, Duran LW, Guire PE, Hergenrother RW, et al. Technologies for the surface modification of biomaterials. In: Yaszemski MJ, Trantolo DJ, Lewandrowski K-U, Hasirci V, Altobelli DE, Wise DL, editors. Biomaterials in Orthopedics. 2nd ed. CRC Press; 2003. p. 93–148.Google Scholar
  14. 14.
    Wang JX, Fan YB, Gao Y, Hu QH, Wang TC. TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials. 2009;30(27):4590–600. doi: 10.1016/j.biomaterials.2009.05.008.CrossRefGoogle Scholar
  15. 15.
    Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91.CrossRefGoogle Scholar
  16. 16.
    Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8. doi: 10.1126/science.1157996.CrossRefGoogle Scholar
  17. 17.
    Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7. doi: 10.1021/Nl0731872.CrossRefGoogle Scholar
  18. 18.
    Pumera M. Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec. 2009;9(4):211–23. doi: 10.1002/tcr.200900008.CrossRefGoogle Scholar
  19. 19.
    Porwal H, Grasso S, Reece M. Review of graphene-ceramic matrix composites. Adv Appl Ceram. 2013;112(8):443. doi: 10.1179/174367613X13764308970581.CrossRefGoogle Scholar
  20. 20.
    Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008;8(12):4469–76. doi: 10.1021/Nl802412n.CrossRefGoogle Scholar
  21. 21.
    Khan U, May P, Porwal H, Nawaz K, Coleman JN. Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. Acs Appl Mater Interface. 2013;5(4):1423–8. doi: 10.1021/Am302864f.CrossRefGoogle Scholar
  22. 22.
    Wu JB, Agrawal M, Becerril HA, Bao ZN, Liu ZF, Chen YS, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano. 2010;4(1):43–8. doi: 10.1021/Nn900728d.CrossRefGoogle Scholar
  23. 23.
    Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–8. doi: 10.1038/354056a0.CrossRefGoogle Scholar
  24. 24.
    Inam F, Yan HX, Jayaseelan DD, Peijs T, Reece MJ. Electrically conductive alumina-carbon nanocomposites prepared by Spark Plasma Sintering. J Eur Ceram Soc. 2010;30(2):153–7. doi: 10.1016/j.jeurceramsoc.2009.05.045.CrossRefGoogle Scholar
  25. 25.
    Porwal H, Tatarko P, Grasso S, Khaliq J, Dlouhý I, Reece M. Graphene reinforced alumina nano-composites. Carbon. 2013;64:359–69. doi: 10.1016/j.carbon.2013.07.086.CrossRefGoogle Scholar
  26. 26.
    Porwal H, Tatarko P, Saggar R, Grasso S, Kumar Mani M, Dlouhý I et al. Tribological properties of silica–graphene nano-platelet composites. Ceram Int. 2014(0). doi: 10.1016/j.ceramint.2014.04.046.
  27. 27.
    Porwal H, Grasso S, Mani MK, Reece MJ. In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite. J Eur Ceram Soc. 2014(0). doi: 10.1016/j.jeurceramsoc.2014.04.031.
  28. 28.
    White AA, Kinloch IA, Windle AH, Best SM. Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites. J R Soc Interface. 2010;7:S529–39. doi: 10.1098/rsif.2010.0117.focus.CrossRefGoogle Scholar
  29. 29.
    White AA, Windle AH, Kinloch IA, Best SM. Preparation and properties of carbon nanotube-reinforced hydroxyapatite. Bioceramics. 2008;361–363:419–22. (Vol 20, Pts 1 and 2.).Google Scholar
  30. 30.
    Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25(1):15–34. doi: 10.1021/Tx200339h.CrossRefGoogle Scholar
  31. 31.
    Lobo AO, Corat MAF, Antunes EF, Palma MBS, Pacheco-Soares C, Garcia EE, et al. An evaluation of cell proliferation and adhesion on vertically-aligned multi-walled carbon nanotube films. Carbon. 2010;48(1):245–54. doi: 10.1016/j.carbon.2009.09.012.CrossRefGoogle Scholar
  32. 32.
    Khang D, Park GE, Webster TJ. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. J Biomed Mater Res A. 2008;86A(1):253–60. doi: 10.1002/Jbm.A.31803.CrossRefGoogle Scholar
  33. 33.
    Porwal H, Tatarko P, Grasso S, Hu C, Boccaccini AR, Dlouhý I et al. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. Sci Technol Adv Mat. 2013;14. doi: 10.1088/1468-6996/14/5/055007.
  34. 34.
    Porwal H, Grasso S, Cordero-Arias L, Li C, Boccaccini A, Reece M. Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites. J Mater Sci: Mater Med. 2014;1–11. doi: 10.1007/s10856-014-5172-x.
  35. 35.
    Meng D, Rath SN, Mordan N, Salih V, Kneser U, Boccaccini AR. In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes. J Biomed Mater Res Part A. 2011;99A:435–44.CrossRefGoogle Scholar
  36. 36.
    Jia ZZ, Zhang J, Jia CC, Nie JH, Chu K. Preparation and characterization of mechanical properties of carbon nanotube/45S5Bioglass composites for biologic applications. Mat Sci Eng A-Struct. 2011;528(3):1553–7. doi: 10.1016/j.msea.2010.10.077.CrossRefGoogle Scholar
  37. 37.
    Madani SY, Mandel A, Seifalian AM. A concise review of carbon nanotube’s toxicology. Nano Rev. 2013;4. doi: 10.3402/nano.v4i0.21521.
  38. 38.
    Li XM, Fan YB, Watari F. Current investigations into carbon nanotubes for biomedical application. Biomed Mater. 2010;5(2). doi: 10.1088/1748-6041/5/2/022001.
  39. 39.
    Pichardo S, Gutierrez-Praena D, Puerto M, Sanchez E, Grilo A, Carnean AM, et al. Oxidative stress responses to carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol In Vitro. 2012;26(5):672–7. doi: 10.1016/j.tiv.2012.03.007.CrossRefGoogle Scholar
  40. 40.
    Andon FT, Fadeel B. Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials. Acc Chem Res. 2013;46(3):733–42. doi: 10.1021/Ar300020b.CrossRefGoogle Scholar
  41. 41.
    Estili M, Kawasaki A, Sakka Y. Highly concentrated 3D macrostructure of individual carbon nanotubes in a ceramic environment. Adv Mater. 2012;24(31):4322–6. doi: 10.1002/adma.201201134.CrossRefGoogle Scholar
  42. 42.
    Estili M, Kawasaki A. An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scripta Mater. 2008;58(10):906–9. doi: 10.1016/j.scriptamat.2008.01.016.CrossRefGoogle Scholar
  43. 43.
    Estili M, Kawasaki A, Sakamoto H, Mekuchi Y, Kuno M, Tsukada T. The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in alpha-alumina ceramics for structural reinforcement. Acta Mater. 2008;56(15):4070–9. doi: 10.1016/j.actamat.2008.04.029.CrossRefGoogle Scholar
  44. 44.
    Estili M, Sakka Y, Kawasaki A. Unprecedented simultaneous enhancement in strain tolerance, toughness and strength of Al2O3 ceramic by multiwall-type failure of a high loading of carbon nanotubes. Nanotechnology. 2013;24(15):155702.CrossRefGoogle Scholar
  45. 45.
    Ramón-Azcón J, Ahadian S, Estili M, Liang X, Ostrovidov S, Kaji H, et al. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater. 2013;25(29):4028–34. doi: 10.1002/adma.201301300.CrossRefGoogle Scholar
  46. 46.
    Estili M, Sakka Y. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Sci Technol Adv Mat. 2014;15(6). doi: 10.1088/1468-6996/15/6/064902.
  47. 47.
    Estili M, Kawasaki A. Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements. Adv Mater. 2010;22(5):607–10. doi: 10.1002/adma.200902140.CrossRefGoogle Scholar
  48. 48.
    Grasso S, Sakka Y, Maizza G. Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008. Sci Technol Adv Mat. 2009;10(5). doi: 10.1088/1468-6996/10/5/053001.
  49. 49.
    Grasso S, Chinnam RK, Porwal H, Boccaccini AR, Reece MJ. Low temperature spark plasma sintering of 45S5 Bioglass®. J Non-Cryst Solids. 2013;362:25–9.CrossRefGoogle Scholar
  50. 50.
    Cho J, Inam F, Reece MJ, Chlup Z, Dlouhy I, Shaffer MSP, et al. Carbon nanotubes: do they toughen brittle matrices? J Mater Sci. 2011;46(14):4770–9. doi: 10.1007/s10853-011-5387-x.CrossRefGoogle Scholar
  51. 51.
    Bokobza L, Zhang J. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym Lett. 2012;6(7):601–8. doi: 10.3144/expresspolymlett.2012.63.CrossRefGoogle Scholar
  52. 52.
    Estili M, Kawasaki A, Pittini-Yamada Y, Utke I, Michler J. In situ characterization of tensile-bending load bearing ability of multi-walled carbon nanotubes in alumina-based nanocomposites. J Mater Chem. 2011;21(12):4272–8. doi: 10.1039/c0jm03906c.CrossRefGoogle Scholar
  53. 53.
    White AA, Best SM, Kinloch IA. Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol. 2007;4(1):1–13. doi: 10.1111/j.1744-7402.2007.02113.x.CrossRefGoogle Scholar
  54. 54.
    Das GK, Chan PPY, Teo A, Loo JSC, Anderson JM, Tan TTY. In vitro cytotoxicity evaluation of biomedical nanoparticles and their extracts. J Biomed Mater Res A. 2010;93A(1):337–46. doi: 10.1002/jbm.a.32533.Google Scholar
  55. 55.
    Wallin R, Arscott E. A practical guide to ISO 10993-5: cytotoxicity. Med Device Diagn Ind Mag. 1998;20:96–8.Google Scholar
  56. 56.
    Pizzoferrato A, Ciapetti G, Stea S, Cenni E, Arciola CR, Granchi D, et al. Cell culture methods for testing biocompatibility. Clin Mater. 1994;15(3):173–90. doi: 10.1016/0267-6605(94)90081-7.CrossRefGoogle Scholar
  57. 57.
    Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49. doi: 10.1002/smll.200700595.CrossRefGoogle Scholar
  58. 58.
    Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81. doi: 10.1016/S0142-9612(99)00242-2.CrossRefGoogle Scholar
  59. 59.
    Detsch R, Guillon O, Wondraczek L, Boccaccini AR. Initial attatchment of rMSC and MG-63 Cells on patterned Bioglass® substrates. Adv Eng Mater. 2012;14(3):B38–44. doi: 10.1002/adem.201180068.CrossRefGoogle Scholar
  60. 60.
    Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A. Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater. 2011;197:327–36. doi: 10.1016/j.jhazmat.2011.09.090.CrossRefGoogle Scholar
  61. 61.
    Misra SK, Ohashi F, Valappil SP, Knowles JC, Roy I, Silva SRP, et al. Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications. Acta Biomater. 2010;6(3):735–42. doi: 10.1016/j.actbio.2009.09.023.CrossRefGoogle Scholar
  62. 62.
    Chłopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Béguin F. In vitro studies of carbon nanotubes biocompatibility. Carbon. 2006;44(6):1106–11. doi: 10.1016/j.carbon.2005.11.022.CrossRefGoogle Scholar
  63. 63.
    Patlolla A, Knighten B, Tchounwou P. Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethn Dis. 2010;20((1 Suppl 1)):S1-65–72.Google Scholar
  64. 64.
    Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett. 2005;155(3):377–84. doi: 10.1016/j.toxlet.2004.11.004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Harshit Porwal
    • 1
    • 2
  • Mehdi Estili
    • 3
    Email author
  • Alina Grünewald
    • 4
  • Salvatore Grasso
    • 1
    • 2
  • Rainer Detsch
    • 4
  • Chunfeng Hu
    • 5
  • Yoshio Sakka
    • 5
  • Aldo R. Boccaccini
    • 4
    Email author
  • Mike J. Reece
    • 1
    • 2
    Email author
  1. 1.School of Engineering and Material ScienceQueen Mary University of LondonLondonUK
  2. 2.Nanoforce Technology LimitedLondonUK
  3. 3.International Center for Young Scientists (ICYS)National Institute for Materials Science (NIMS)TsukubaJapan
  4. 4.Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  5. 5.Materials Processing UnitNational Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations