Biofabricated constructs as tissue models: a short review

  • Pedro F. CostaEmail author
Special Issue: ESB 2014 Tissue Engineering Constructs and Cell Substrates
Part of the following topical collections:
  1. Special Issue: ESB 2014


Biofabrication is currently able to provide reliable models for studying the development of cells and tissues into multiple environments. As the complexity of biofabricated constructs is becoming increasingly higher their ability to closely mimic native tissues and organs is also increasing. Various biofabrication technologies currently allow to precisely build cell/tissue constructs at multiple dimension ranges with great accuracy. Such technologies are also able to assemble together multiple types of cells and/or materials and generate constructs closely mimicking various types of tissues. Furthermore, the high degree of automation involved in these technologies enables the study of large arrays of testing conditions within increasingly smaller and automated devices both in vitro and in vivo. Despite not yet being able to generate constructs similar to complex tissues and organs, biofabrication is rapidly evolving in that direction. One major hurdle to be overcome in order for such level of complex detail to be achieved is the ability to generate complex vascular structures within biofabricated constructs. This review describes several of the most relevant technologies and methodologies currently utilized within biofabrication and provides as well a brief overview of their current and future potential applications.


Human Umbilical Vein Endothelial Cell Additive Manufacturing Inkjet Printer Selective Laser Sinter Fuse Deposition Modelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Pedro F. Costa would like to thank the TUM University Foundation for his current Postdoctoral fellowship.


  1. 1.
    Project on Emerging Nanotechnologies. Consumer Products Inventory. Retrieved October 2013, from
  2. 2.
    Levard C, Hotze EM, Lowry GV, Brown GE Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012;46(13):6900–14. doi: 10.1021/es2037405.CrossRefGoogle Scholar
  3. 3.
    Reidy B, Haase A, Luch A, Dawson K, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295–350.CrossRefGoogle Scholar
  4. 4.
    Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344(5):385–6. doi: 10.1056/NEJM200102013440516.CrossRefGoogle Scholar
  5. 5.
    Brun P, Dickinson SC, Zavan B, Cortivo R, Hollander AP, Abatangelo G. Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther. 2008;10(6):R132. doi: 10.1186/ar2549.CrossRefGoogle Scholar
  6. 6.
    Eaglstein WH, Falanga V. Tissue engineering and the development of Apligraf, a human skin equivalent. Clin Ther. 1997;19(5):894–905.CrossRefGoogle Scholar
  7. 7.
    Mason C. Automated tissue engineering: a major paradigm shift in health care. Med Device Technol. 2003;14(1):16–8.Google Scholar
  8. 8.
    Costa PF, Martins A, Neves NM, Gomes ME, Reis RL. Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors. Tissue Eng B. 2014;. doi: 10.1089/ten.TEB.2013.0751.Google Scholar
  9. 9.
    Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication. 2009;1(2):022001. doi: 10.1088/1758-5082/1/2/022001.CrossRefGoogle Scholar
  10. 10.
    Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng. 2014;16:247–76. doi: 10.1146/annurev-bioeng-071813-105155.CrossRefGoogle Scholar
  11. 11.
    Pereira DA, Williams JA. Origin and evolution of high throughput screening. Br J Pharmacol. 2007;152(1):53–61. doi: 10.1038/sj.bjp.0707373.CrossRefGoogle Scholar
  12. 12.
    Fu AY, Spence C, Scherer A, Arnold FH, Quake SR. A microfabricated fluorescence-activated cell sorter. Nat Biotechnol. 1999;17(11):1109–11. doi: 10.1038/15095.CrossRefGoogle Scholar
  13. 13.
    Segerink LI, Koster MJ, Sprenkels AJ, van den Berg A. A low-cost 2D fluorescence detection system for mum sized beads on-chip. Lab Chip. 2012;12(10):1780–3. doi: 10.1039/c2lc21187d.CrossRefGoogle Scholar
  14. 14.
    Yusof A, Keegan H, Spillane CD, Sheils OM, Martin CM, O’Leary JJ, et al. Inkjet-like printing of single-cells. Lab Chip. 2011;11(14):2447–54. doi: 10.1039/c1lc20176j.CrossRefGoogle Scholar
  15. 15.
    Barron JA, Krizman DB, Ringeisen BR. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng. 2005;33(2):121–30.CrossRefGoogle Scholar
  16. 16.
    Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6(2):139–47.CrossRefGoogle Scholar
  17. 17.
    Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication. 2013;5(1):015013. doi: 10.1088/1758-5082/5/1/015013.CrossRefGoogle Scholar
  18. 18.
    Kurosawa H, Imamura T, Koike M, Sasaki K, Amano Y. A simple method for forming embryoid body from mouse embryonic stem cells. J Biosci Bioeng. 2003;96(4):409–11. doi: 10.1016/S1389-1723(03)90148-4.CrossRefGoogle Scholar
  19. 19.
    Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–12. doi: 10.1126/science.1064829.CrossRefGoogle Scholar
  20. 20.
    Sun T, Jackson S, Haycock JW, MacNeil S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol. 2006;122(3):372–81. doi: 10.1016/j.jbiotec.2006.12.021.CrossRefGoogle Scholar
  21. 21.
    Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol. 2005;15(5):405–12. doi: 10.1016/j.semcancer.2005.06.009.CrossRefGoogle Scholar
  22. 22.
    Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater. 2010;9(2):90–3. doi: 10.1038/Nmat2619.CrossRefGoogle Scholar
  23. 23.
    Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910–7. doi: 10.1016/j.biomaterials.2009.06.034.CrossRefGoogle Scholar
  24. 24.
    Schmidt-Nielsen K. Scaling in biology: the consequences of size. J Exp Zool. 1975;194(1):287–307. doi: 10.1002/jez.1401940120.CrossRefGoogle Scholar
  25. 25.
    Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31(24):6173–81. doi: 10.1016/j.biomaterials.2010.04.045.CrossRefGoogle Scholar
  26. 26.
    Kaigler D, Silva EA, Mooney DJ. Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol. 2012;84(2):230–8. doi: 10.1902/jop.2012.110684.CrossRefGoogle Scholar
  27. 27.
    Wust S, Godla ME, Muller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10(2):630–40. doi: 10.1016/j.actbio.2013.10.016.CrossRefGoogle Scholar
  28. 28.
    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30. doi: 10.1002/adma.201305506.CrossRefGoogle Scholar
  29. 29.
    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–74. doi: 10.1038/nmat3357.CrossRefGoogle Scholar
  30. 30.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.CrossRefGoogle Scholar
  31. 31.
    Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24. doi: 10.1038/nmat1421.CrossRefGoogle Scholar
  32. 32.
    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27. doi: 10.1016/j.biomaterials.2004.11.057.CrossRefGoogle Scholar
  33. 33.
    Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–85. doi: 10.1016/S0142-9612(01)00232-0.CrossRefGoogle Scholar
  34. 34.
    Eosoly S, Brabazon D, Lohfeld S, Looney L. Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds. Acta Biomater. 2010;6(7):2511–7. doi: 10.1016/j.actbio.2009.07.018.CrossRefGoogle Scholar
  35. 35.
    Dalton PD, Lleixa Calvet J, Mourran A, Klee D, Moller M. Melt electrospinning of poly-(ethylene glycol-block-epsilon-caprolactone). Biotechnol J. 2006;1(9):998–1006. doi: 10.1002/biot.200600064.CrossRefGoogle Scholar
  36. 36.
    Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater. 2011;23(47):5651–7. doi: 10.1002/adma.201103482.CrossRefGoogle Scholar
  37. 37.
    Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR. Dermal fibroblast infiltration of poly(epsilon-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5(2):025001. doi: 10.1088/1758-5082/5/2/025001.CrossRefGoogle Scholar
  38. 38.
    Costa PF, Vaquette C, Zhang Q, Reis RL, Ivanovski S, Hutmacher DW. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol. 2014;41(3):283–94. doi: 10.1111/jcpe.12214.CrossRefGoogle Scholar
  39. 39.
    Simon CG Jr, Stephens JS, Dorsey SM, Becker ML. Fabrication of combinatorial polymer scaffold libraries. Rev Sci Instrum. 2007;78(7):072207. doi: 10.1063/1.2755761.CrossRefGoogle Scholar
  40. 40.
    Zapata P, Su J, Garcia AJ, Meredith JC. Quantitative high-throughput screening of osteoblast attachment, spreading, and proliferation on demixed polymer blend micropatterns. Biomacromolecules. 2007;8(6):1907–17. doi: 10.1021/Bm061134t.CrossRefGoogle Scholar
  41. 41.
    Nakajima M, Ishimuro T, Kato K, Ko IK, Hirata I, Arima Y, et al. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials. 2007;28(6):1048–60. doi: 10.1016/j.biomaterials.2006.10.004.CrossRefGoogle Scholar
  42. 42.
    Albrecht DR, Tsang VL, Sah RL, Bhatia SN. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip. 2005;5(1):111–8. doi: 10.1039/B406953f.CrossRefGoogle Scholar
  43. 43.
    Simon CG Jr, Eidelman N, Kennedy SB, Sehgal A, Khatri CA, Washburn NR. Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D, L-lactic acid) blends. Biomaterials. 2005;26(34):6906–15. doi: 10.1016/j.biomaterials.2005.04.050.CrossRefGoogle Scholar
  44. 44.
    Kohn J. New approaches to biomaterials design. Nat Mater. 2004;3(11):745–7. doi: 10.1038/Nmat1249.CrossRefGoogle Scholar
  45. 45.
    Anderson DG, Levenberg S, Langer R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol. 2004;22(7):863–6. doi: 10.1038/nbt981.CrossRefGoogle Scholar
  46. 46.
    Costa PF, Vaquette C, Baldwin J, Chhaya M, Gomes ME, Reis RL, et al. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication. 2014;6(3):035006. doi: 10.1088/1758-5082/6/3/035006.CrossRefGoogle Scholar
  47. 47.
    Higuera GA, Hendriks JA, van Dalum J, Wu L, Schotel R, Moreira-Teixeira L, et al. In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integr Biol. 2013;5(6):889–98. doi: 10.1039/c3ib40023a.CrossRefGoogle Scholar
  48. 48.
    Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amedee J, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2(1):014101. doi: 10.1088/1758-5082/2/1/014101.CrossRefGoogle Scholar
  49. 49.
    Xu HH, Burguera EF, Carey LE. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures. Biomaterials. 2007;28(26):3786–96. doi: 10.1016/j.biomaterials.2007.05.015.CrossRefGoogle Scholar
  50. 50.
    Song G, Habibovic P, Bao C, Hu J, van Blitterswijk CA, Yuan H, et al. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials. 2013;34(9):2167–76. doi: 10.1016/j.biomaterials.2012.12.010.CrossRefGoogle Scholar
  51. 51.
    Liebschner MAK, Chun K, Behni B. Intra-Operative Patient Specific Functional Scaffold Fabrication. Orthopaedic Research Society Annual Meeting; February; San Francisco (USA); 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Medical Microbiology, Immunology and HygieneTechnical University of MunichMunichGermany

Personalised recommendations