Iron and iron-based alloys for temporary cardiovascular applications

  • A. FrancisEmail author
  • Y. Yang
  • S. Virtanen
  • A. R. BoccacciniEmail author
Engineering and Nano-engineering Approaches for Medical Devices
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices


In the last decade, biodegradable metals have emerged as a topic of interest for particular biomedical applications which require high strength to bulk ratio, including for cardiovascular stents. The advantages of biodegradable materials are related to the reduction of long term risks associated with the presence of permanent metal implants, e.g. chronic inflammation and in-stent restenosis. From a structural point of view, the analysis of the literature reveals that iron-based alloys used as temporary biodegradable stents have several advantages over Mg-based alloys in terms of ductility and strength. Efforts on the modification and tunability of iron-based alloys design and compositions have been mainly focused on controlling the degradation rate while retaining the mechanical integrity within a reasonable period. The early pre-clinical results of many iron-based alloys seem promising for future implants developments. This review discusses the available literature focusing mainly on: (i) Fe and Fe-based alloys design and fabrication techniques; (ii) in vitro and in vivo performance; (iii) cytotoxicity and cell viability tests.


Spark Plasma Sinter Equal Channel Angular Pressure Pure Iron Bulk Metallic Glass Biphasic Calcium Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A. Francis gratefully acknowledges support by the Alexander von Humboldt foundation in form of a fellowship for a research stay for experienced researchers. Ms Yuyun Yang acknowledges a scholarship of the Chinese Scholarship Council.


  1. 1.
    Serruys PW, Rensing BJ. Handbook of coronary stents. 4th ed. London: Taylor & Francis; 2001.Google Scholar
  2. 2.
    Tsuji T, Tamai H, Igaki K, Kyo E, Kosuga K, Hata T, Nakamura T, Fujita S, Takeda S, Motohara S, Uehata H. Biodegradable stents as a platform to drug loading. Int J Cardiovasc Interv. 2003;5:13–6.Google Scholar
  3. 3.
    Tsuji T, Tamai H, Igaki K, Kyo E, Kosuga K, Hata T, Okada M, Nakamura T, Komori H, Motohara S, Uehata H. Biodegradable polymeric stents. Curr Interv Cardiol Rep. 2001;3(1):10–7.CrossRefGoogle Scholar
  4. 4.
    Huang T, Cheng J, Zheng YF. In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering. Mater Sci Eng. 2014;35:43–53.CrossRefGoogle Scholar
  5. 5.
    Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12:4250–70.CrossRefGoogle Scholar
  6. 6.
    Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Erbeli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Bose D, Koolen J, Luscher TF, Weissman N, Waksman R. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomized multicentre trial. Lancet. 2007;369:1869–75.CrossRefGoogle Scholar
  7. 7.
    Waksman R, Pakala R, Kuchulakanti P, Baffour R, Hellinga D, Seabron R, Tio FO, Wittchow E, Hartwig S, Harder C, Rohde R, Heublein B, Andreae A, Waldmann KH, Haverich A. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv. 2006;68:607–17.CrossRefGoogle Scholar
  8. 8.
    Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30:484–98.CrossRefGoogle Scholar
  9. 9.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–63.CrossRefGoogle Scholar
  10. 10.
    Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol. 2004;17:391–5.CrossRefGoogle Scholar
  11. 11.
    Auerbach M, Ballard H. Clinical use of intravenous iron: administration, efficacy, and safety. Hematology. 2010;2010:338–47.CrossRefGoogle Scholar
  12. 12.
    Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, Hermawan H. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Mater Sci Eng. 2014;36:336–44.CrossRefGoogle Scholar
  13. 13.
    Wen Z, Zhang L, Chen C, Liu Y, Wu C, Dai C. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material. Mater Sci Eng. 2013;33:1022–31.CrossRefGoogle Scholar
  14. 14.
    Zhu S, Huang N, Xu L, Zhang Y, Liu H, Sun H, Leng H. Biocompatibility of pure iron: in vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Mater Sci Eng. 2009;29:1589–92.CrossRefGoogle Scholar
  15. 15.
    Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27:4955–62.CrossRefGoogle Scholar
  16. 16.
    Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, Brauer H, Fischer A, Hausdorf G. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart. 2001;86:563–9.CrossRefGoogle Scholar
  17. 17.
    Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6(5):1693–7.CrossRefGoogle Scholar
  18. 18.
    Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010;6:1705–13.CrossRefGoogle Scholar
  19. 19.
    Moszner F, Sologubenkoa A, Schinhammer M, Lerchbacher C, Hänzi A, Leitnerc H, et al. Precipitation hardening of biodegradable Fe–Mn–Pd alloys. Acta Mater. 2011;59:981–91.CrossRefGoogle Scholar
  20. 20.
    Schinhammer M, Pecnik C, Rechberger F, Hänzi A, Löffler JF, Uggowitzer PJ. Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe–Mn–C (–Pd) TWIP alloys. Acta Mater. 2012;60:2746–56.CrossRefGoogle Scholar
  21. 21.
    Liu B, Zheng YF, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett. 2011;65:540–3.CrossRefGoogle Scholar
  22. 22.
    Wang YB, Li HF, Zheng YF, Li M. Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. Mater Sci Eng. 2012;32:599–606.CrossRefGoogle Scholar
  23. 23.
    Jynge P, Brurok H, Asplund A, Towart R, Refsum H, Karlsson JOG. Cardiovascular safety of MnDPDP and MnCl2. Acta Radiol. 1997;38:740–9.CrossRefGoogle Scholar
  24. 24.
    Crossgrove J, Zheng W. Manganese toxicity upon overexposure. NMR Biomed. 2004;17:544–53.CrossRefGoogle Scholar
  25. 25.
    Ratner BD. Biomaterials science: an introduction to materials in medicine. Amsterdam, Boston: Elsevier Academic Press; 2004.Google Scholar
  26. 26.
    Callister WD, Rethwisch DG. Materials science and engineering: an introduction. 8th ed. Hoboken: Wiley; 2009.Google Scholar
  27. 27.
    Mitchell BS. An introduction to materials engineering and science for chemical and materials engineers. Hoboken: Wiley; 2004.Google Scholar
  28. 28.
    Liu B, Zheng YF. Effects of alloying elements (Mn Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7:1407–20.CrossRefGoogle Scholar
  29. 29.
    Allenstein U, Ma Y, Arabi-Hashemi A, Zink M, Mayr SG. Fe–Pd based ferromagnetic shape memory actuators for medical applications: biocompatibility, effect of surface roughness and protein coatings. Acta Biomater. 2013;9:5845–53.CrossRefGoogle Scholar
  30. 30.
    Kock I, Hamann S, Brunken H, Edler T, Mayr SG, Ludwig A. Development and characterization of Fe70Pd30 ferromagnetic shape memory splats. Intermetallics. 2010;18(5):877–82.CrossRefGoogle Scholar
  31. 31.
    Claussen I, Mayr SG. Mechanical properties and twin boundary drag in FePd ferromagnetic shape memory foils—experiments and ab initio modeling. New J Phys. 2011;13(6):063034.CrossRefGoogle Scholar
  32. 32.
    Cheng J, Zheng YF. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering. J Biomed Mater Res B. 2013;101B:485–97.CrossRefGoogle Scholar
  33. 33.
    Wegener B, Sievers B, Utzschneider S, Peter Müller P, Jansson V, Rößler S, Nies B, Stephani G, Kieback B, Quadbeck P. Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater Sci Eng. 2011;176:1789–96.CrossRefGoogle Scholar
  34. 34.
    Hermawan H, Dubé D, Mantovani D. Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J Biomed Mater Res A. 2010;93:1–11.Google Scholar
  35. 35.
    Moravej M, Prima F, Fiset M, Mantovani D. Electroformed iron as new biomaterial for degradable stents: development process and structure–properties relationship. Acta Biomater. 2010;6:1726–35.CrossRefGoogle Scholar
  36. 36.
    Nie FL, Zheng YF, Wei SC, Hu C, Yang G. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater. 2010;5:065015.CrossRefGoogle Scholar
  37. 37.
    Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ. A two step SPD processing of ultrafine-grained titanium. Nanostruct Mater. 1999;11(7):947.CrossRefGoogle Scholar
  38. 38.
    Serruys PW, Kutryk MJB, Ong ATL. Drug therapy-coronary-artery stents. N Engl J Med. 2006;354:483–95.CrossRefGoogle Scholar
  39. 39.
    Hermawan H, Dubé D, Mantovani D. Development of degradable Fe–35Mn alloy for biomedical application. Adv Mater Res. 2007;15(17):107–12 [THERMEC 2006 Supplement].CrossRefGoogle Scholar
  40. 40.
    Hermawan H, Alamdari H, Mantovani D, Dube D. Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall. 2008;51:38–45.CrossRefGoogle Scholar
  41. 41.
    Lin HC, Lin KM, Lin CS, Ouyang TM. The corrosion behavior of Fe-based shape memory alloys. Corros Sci. 2002;44:2013–26.CrossRefGoogle Scholar
  42. 42.
    Moravej M, Purnama A, Fiset M, Couet J, Mantovani D. Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater. 2010;6:1843–51.CrossRefGoogle Scholar
  43. 43.
    Schinhammer M, Steiger P, Moszner F, Löffler JF, Uggowitzer PJ. Degradation performance of biodegradable Fe–Mn–C–(Pd) alloys. Mater Sci Eng. 2013;33:1882–93.CrossRefGoogle Scholar
  44. 44.
    ASTM G 31-99. Standard practice for laboratory immersion corrosion testing of metals. Conshohocken: ASTM International; 2001.Google Scholar
  45. 45.
    Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio F. Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol. 2008;21(1):15–20.CrossRefGoogle Scholar
  46. 46.
    Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, Witte F, Willbold E, Schinhammer M, Meischel M, Uggowitzer PJ, Löffler JF, Weinberg A. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater. 2014;10:3346–53.CrossRefGoogle Scholar
  47. 47.
    Hermawan H, Purnama A, Dube D, Couet J, Mantovani D. Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater. 2010;6:1852–60.CrossRefGoogle Scholar
  48. 48.
    Zhang EL, Chen HY, Shen F. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci Mater Med. 2010;21:2151–63.CrossRefGoogle Scholar
  49. 49.
    Schinhammer M, Gerber I, Hänzi AC, Uggowitzer PJ. On the cytocompatibility of biodegradable Fe-based alloys. Mater Sci Eng. 2013;33:782–9.CrossRefGoogle Scholar
  50. 50.
    Mueller PP, May T, Perz A, Hauser H, Peuster M. Control of smooth muscle cell proliferation by ferrous iron. Biomaterials. 2006;27:2193–200.CrossRefGoogle Scholar
  51. 51.
    Fussenegger M, Bailey JE, Hauser H, Mueller PP. Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotechnol. 1999;17:35–42.CrossRefGoogle Scholar
  52. 52.
    Purnama A, Mantovani D, Couet J. Caveolin: a possible biomarker of degradable metallic materials toxicity in vascular cells. Acta Biomater. 2013;9:8754–60.CrossRefGoogle Scholar
  53. 53.
    Ma Y, Zink M, Mayr SG. Biocompatibility of single crystalline Fe70Pd30 ferromagnetic shape memory films. Appl Phys Lett. 2010;96(21):213703.CrossRefGoogle Scholar
  54. 54.
    Food and Nutrition Board Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodide, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington: National Academic Press; 2002. p. 290–393.Google Scholar
  55. 55.
    Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561–73.CrossRefGoogle Scholar
  56. 56.
    Gu XN, Zheng YF. A review on magnesium alloys as biodegradable materials. Front Mater Sci China. 2010;4:111–5.CrossRefGoogle Scholar
  57. 57.
    Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials. 2007;28:1689–710.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Advanced MaterialsCentral Metallurgical R&D Institute (CMRDI)CairoEgypt
  2. 2.Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Department of Materials Science and Engineering, Institute of Surface Science and CorrosionUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations