Ectopic osteogenesis of an injectable nHAC/CSH loaded with blood-acquired mesenchymal progenitor cells in a nude mice model

  • Xue Han
  • Xia Wu
  • Hongchen LiuEmail author
  • Dongsheng Wang
  • Lingling E
  • Wei Zhou
Biocompatibility Studies
Part of the following topical collections:
  1. Biocompatibility Studies


An injectable bone cement, nHAC/CSH, which consists of nano-hydroxyapatite/collagen (nHAC) and calcium sulphate hemihydrate (CaSO4.½H2O; CSH) was investigated as a tissue-engineered scaffold material with blood-acquired mesenchymal progenitor cells (BMPCs) as seeding cells. An in vitro study on the cytocompatability of nHAC/CSH and an in vivo study on the ectopic bone formation of nHAC/CSH loaded with dBMPCs were both conducted. The dBMPCs morphology, proliferation, differentiation and apoptosis assays were conducted using the direct contact and extract method. The cells tests exhibited normal growth and bioactive function in vitro. Studies in vivo showed that this injectable tissue engineered bone (ITB) formed bone structure in the heterotopic site of nude mice. These findings indicate that the ITB composed of nHAC/CSH and dBMPCs may represent a useful strategy for clinical reconstruction of irregular bone defects.


Osteogenic Differentiation Extract Medium Nude Mouse Model Ectopic Bone Formation Injectable Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by Postdoctoral Science Foundation of China No.20100481483 and National Natural Science Foundation of China No.81271180. The authors report no conflicts of interest related to this study.


  1. 1.
    Marolt D, Knezevic M, Novakovic GV. Bone tissue engineering with human stem cells. Stem Cell Res Ther. 2010;1:10.CrossRefGoogle Scholar
  2. 2.
    Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering–an overview. Mar Drugs. 2010;8:2252–66.CrossRefGoogle Scholar
  3. 3.
    Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A. Bone regeneration and stem cells. J Cell Mol Med. 2011;15:718–46.CrossRefGoogle Scholar
  4. 4.
    He X, Dziak R, Mao K, Genco R, Swithart M, Li C, Yang S. Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration. Tissue Eng Part A. 2013;19:508–18.CrossRefGoogle Scholar
  5. 5.
    Yamada Y, Nakamura S, Ito K, Umemura E, Hara K, Nagasaka T, Abe A, Baba S, Furuichi Y, Izumi Y, Klein OD, Wakabayashi T. Injectable bone tissue engineering using expanded mesenchymal stem cells. Stem Cells. 2013;31:572–80.CrossRefGoogle Scholar
  6. 6.
    Pietrzak WS, Ronk R. Calcium sulfate bone void filler: a review and a look ahead. J Cranio-fac Surg. 2000;11:327–33.CrossRefGoogle Scholar
  7. 7.
    Peltier LF. The use of plaster of paris to fill large defects in bone. Am J Surg. 1959;97:311–5.CrossRefGoogle Scholar
  8. 8.
    Pecora GE, De Leonardis D, Della Rocca C, Cornelini R, Cortesini C. Short-term healing following the use of calcium sulfate as a grafting material for sinus augmentation: a clinical report. Int J Oral Maxillo-fac Implants. 1998;13:866–73.Google Scholar
  9. 9.
    Scarano A, Carinci F, Cimorelli E, Quaranta M, Piattelli A. Application of calcium sulfate in surgical-orthodontic treatment of impacted teeth: a new procedure to control hemostasis. J Oral Maxillo-fac Surg. 2010;68:964–8.CrossRefGoogle Scholar
  10. 10.
    Bell WH. Resorption characteristics of bone and bone substitutes. Oral Surg Oral Med Oral Pathol. 1964;17:650–7.CrossRefGoogle Scholar
  11. 11.
    Du C, Cui FZ, Feng QL, Zhu XD, de Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res. 1998;42:540–8.CrossRefGoogle Scholar
  12. 12.
    Liu HY, Liu X, Zhang LP, Ai HJ, Cui FZ. Improvement on the performance of bone regeneration of calcium sulfate hemihydrate by adding mineralized collagen. Tissue Eng Part A. 2010;16:2075–84.CrossRefGoogle Scholar
  13. 13.
    Liu X, Wang XM, Chen Z, Cui FZ, Liu HY, Mao K, Wang Y. Injectable bone cement based on mineralized collagen. J Biomed Mater Res B Appl Biomater. 2010;94:72–9.Google Scholar
  14. 14.
    Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol. 2001;153:1133–40.CrossRefGoogle Scholar
  15. 15.
    Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells. 2006;24:1613–9.CrossRefGoogle Scholar
  16. 16.
    Cesselli D, Beltrami AP, Rigo S, Bergamin N, D’Aurizio F, Verardo R, Piazza S, Klaric E, Fanin R, Toffoletto B, Marzinotto S, Mariuzzi L, Finato N, Pandolfi M, Leri A, Schneider C, Beltrami CA, Anversa P. Multipotent progenitor cells are present in human peripheral blood. Circ Res. 2009;104:1225–34.CrossRefGoogle Scholar
  17. 17.
    Raghunath J, Sutherland J, Salih V, Mordan N, Butler PE, Seifalian AM. Chondrogenic potential of blood-acquired mesenchymal progenitor cells. J Plast Reconstr Aesthet Surg. 2010;63:841–7.CrossRefGoogle Scholar
  18. 18.
    Chim H, Schantz JT. Human circulating peripheral blood mononuclear cells for calvarial bone tissue engineering. Plast Reconstr Surg. 2006;117:468–78.CrossRefGoogle Scholar
  19. 19.
    Wan C, He Q, Li G. Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model. J Orthop Res. 2006;24:610–8.CrossRefGoogle Scholar
  20. 20.
    Han X, Liu H, Wang D, Su F, Zhang Y, Zhou W, Li S, Yang R. Alveolar bone regeneration around immediate implants using an injectable nHAC/CSH loaded with autogenic blood-acquired mesenchymal progenitor cells: an experimental study in the dog mandible. Clin Implant Dent Relat Res. 2013;15:390–401.CrossRefGoogle Scholar
  21. 21.
    Huss R, Lange C, Weissinger EM, Kolb HJ, Thalmeier K. Evidence of peripheral blood-derived, plastic-adherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells. 2000;18:252–60.CrossRefGoogle Scholar
  22. 22.
    Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res. 2001;382:42–50.CrossRefGoogle Scholar
  23. 23.
    Thomas MV, Puleo DA. Calcium sulfate: properties and clinical applications. J Biomed Mater Res B Appl Biomater. 2009;88:597–610.CrossRefGoogle Scholar
  24. 24.
    Guarnieri R, Bovi M. Maxillary sinus augmentation using prehardened calcium sulfate: a case report. Int J Periodontics Restorative Dent. 2002;22:503–8.Google Scholar
  25. 25.
    Kutkut A, Andreana S. Medical-grade calcium sulfate hemihydrate in clinical implant dentistry: a review. J Long Term Eff Med Implants. 2010;20:295–301.CrossRefGoogle Scholar
  26. 26.
    Thomas MV, Puleo DA, Al-Sabbagh M. Calcium sulfate: a review. J Long Term Eff Med Implants. 2005;15:599–607.CrossRefGoogle Scholar
  27. 27.
    Nilsson M, Wang JS, Wielanek L, Tanner KE, Lidgren L. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute. J Bone Joint Surg Br. 2004;86:120–5.Google Scholar
  28. 28.
    Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2:477–88.CrossRefGoogle Scholar
  29. 29.
    Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials. 2000;21:1095–102.CrossRefGoogle Scholar
  30. 30.
    Karner E, Unger C, Sloan AJ, Ahrlund-Richter L, Sugars RV, Wendel M. Bone matrix formation in osteogenic cultures derived from human embryonic stem cells in vitro. Stem Cells Dev. 2007;16:39–52.CrossRefGoogle Scholar
  31. 31.
    Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990;143:420–30.CrossRefGoogle Scholar
  32. 32.
    Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64:295–312.CrossRefGoogle Scholar
  33. 33.
    Stucki U, Schmid J, Hammerle CF, Lang NP. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration. A descriptive histochemical study in humans. Clin Oral Implants Res. 2001;12:121–7.CrossRefGoogle Scholar
  34. 34.
    Marom R, Shur I, Solomon R, Benayahu D. Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J Cell Physiol. 2005;202:41–8.CrossRefGoogle Scholar
  35. 35.
    Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.CrossRefGoogle Scholar
  36. 36.
    Chim H, Schantz JT, Gosain AK. Beyond the vernacular: new sources of cells for bone tissue engineering. Plast Reconstr Surg. 2008;122:755–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xue Han
    • 1
    • 2
  • Xia Wu
    • 2
  • Hongchen Liu
    • 2
    Email author
  • Dongsheng Wang
    • 2
  • Lingling E
    • 2
  • Wei Zhou
    • 1
  1. 1.Department of Stomatology309th Hospital of Chinese People’s Liberation ArmyBeijingChina
  2. 2.Dental InstituteGeneral Hospital of Chinese People’s Liberation ArmyBeijingChina

Personalised recommendations