Advertisement

Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells

  • Ali A. Alshatwi
  • Jegan Athinarayanan
  • Periasamy Vaiyapuri Subbarayan
Engineering and Nano-engineering Approaches for Medical Devices
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices

Abstract

Platinum-based chemotherapeutic drugs, including cisplatin, carboplatin, and oxaliplatin, have been used to manage cancer in spite of dose-dependent side effects, including nephrotoxicity, neurotoxicity and ototoxicity. These disadvantages have prompted the development of new strategies for cancer therapy that utilize functionalized nanoparticles as nanomedicines. In the present investigation, we have synthesized platinum nanoparticles using tea polyphenol (TPP) as both a reducing and surface modifying agent. The crystalline nature and morphology of the prepared TPP-functionalized platinum nanoparticles (TPP@Pt) were analyzed using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD results revealed that the TPP@Pt had a crystalline nature with a face-centered cubic structure. TEM imaging suggested that the TTP@Pt are flower shaped with a well-dispersed 30–60 nm-sized TPP@Pt formation. Cervical cancer cells (SiHa) were then treated with different concentrations of TPP@Pt. The effects of TPP@Pt on cell viability, nuclear morphology and cell cycle distribution were investigated. A cell viability assay revealed that the proliferation of SiHa cells was inhibited by TPP@Pt. Propidium iodide nuclear staining indicated that TPP@Pt induced nuclear fragmentation and chromatin condensation. Treatment with TPP@Pt significantly increased the percentage of cells in the G2/M phase, which indicates induced cell cycle arrest in the G2/M phase and an increased number of cells in the subG0 cell death phase. These findings highlight a potential use of TPP@Pt in cervical cancer treatment.

Graphical Abstract

Keywords

Catechin CoQ10 Cervical Cancer Cell Malignant Mesothelioma Epigallocatechin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge the financial support of the Deanship of Scientific Research, King Saud University, Saudi Arabia (Project No.: RGP-VPP-276).

References

  1. 1.
    Jee J, Na JH, Lee S, Kim SH, Choi K, Yeo Y, Kwon IC. Cancer targeting strategies in nanomedicine: design and application of chitosan nanoparticles. Curr Opin Solid State Mater Sci. 2012;16:333–42.CrossRefGoogle Scholar
  2. 2.
    Rosenholm JM, Sahlgren C, Lindén M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles–opportunities & challenges. Nanoscale. 2010;2:1870–83.CrossRefGoogle Scholar
  3. 3.
    Bourzac K. Nanotechnology: carrying drugs. Nature. 2012;491:S58–60.CrossRefGoogle Scholar
  4. 4.
    Rosenblum LT, Kosaka N, Mitsunaga M, Choyke PL, Kobayashi H. In vivo molecular imaging using nanomaterials: general in vivo characteristics of nano-sized reagents and applications for cancer diagnosis (Review). Mol Membr Biol. 2010;27:274–85.CrossRefGoogle Scholar
  5. 5.
    Pescatori M, Davide B, Enrica V, Cécili M, Camilla B, Elena M, Andrea P, et al. Functionalized carbon nanotubes as immunomodulator systems. Biomaterials. 2013;34:4395–403.CrossRefGoogle Scholar
  6. 6.
    Delogu LG, Enrica V, Roberto M, Gérard AP, Ciriaco C, Roberto M, Luciano M, Francesco S, et al. Ex vivo impact of functionalized carbon nanotubes on human immune cells. Nanomedicine. 2012;7:231–43.CrossRefGoogle Scholar
  7. 7.
    Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci. 2012;5:6744–62.CrossRefGoogle Scholar
  8. 8.
    Kostova I. Platinum complexes as anticancer agents. Recent Pat Anti-Cancer Drug Discov. 2006;1:1–22.CrossRefGoogle Scholar
  9. 9.
    Cowley A. On the use of platinum in biomedical applications. In: The 4th International Platinum Conference, Platinum in transition Boom or Bust, The Southern African Institute of Mining and Metallurgy, 2010.Google Scholar
  10. 10.
    Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.CrossRefGoogle Scholar
  11. 11.
    Cuenya BR. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518:3127–50.CrossRefGoogle Scholar
  12. 12.
    Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107:668–77.CrossRefGoogle Scholar
  13. 13.
    Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.CrossRefGoogle Scholar
  14. 14.
    Park S, Xie Y, Weaver MJ. Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir. 2002;18:5792–8.CrossRefGoogle Scholar
  15. 15.
    Bendale Y, Bendale V, Paul S, Bhattacharyya SS. Green synthesis, characterization and anticancer potential of platinum nanoparticles bioplatin. Chin J integr med. 2012;10:681–9.CrossRefGoogle Scholar
  16. 16.
    Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M, Kataoka K, Kato Y, Yoshizaki T. Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci. 2013;104:369–74.CrossRefGoogle Scholar
  17. 17.
    Hou J, Shang J, Jiao C, Jiang P, Xiao H, Luo L, Liu T. A core cross-linked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency. Macromol Biosci. 2013;13:954–65.CrossRefGoogle Scholar
  18. 18.
    Min Y, Li J, Liu F, Yeow EK, Xing B. NIR light mediated photoactivation pt based antitumor prodrug and simultanous cellular apoptosis imaging via upconversion nanoparticles. Angew Chem Int Ed Engl. 2014;53:1012–6.CrossRefGoogle Scholar
  19. 19.
    Mironava T, Simon M, Rafailovich MH, Rigas B. Platinum folate nanoparticles toxicity: cancer vs. normal cells. Toxicol In Vitro. 2013;27:882–9.CrossRefGoogle Scholar
  20. 20.
    Pandey A, Kulkarni A, Roy B, Goldman A, Sarangi S, Sengupta P, Phipps C, Kopparam J, Oh M, Basu S, et al. Sequential application of a cytotoxic nanoparticle and a PI3 K inhibitor enhances antitumor efficacy. Cancer Res. 2014;74:675–85.CrossRefGoogle Scholar
  21. 21.
    Rout SR, Behera B, Maiti TK, Mohapatra S. Multifunctional magnetic calcium phosphate nanoparticles for targeted platin delivery. Dalton Trans. 2012;41:10777–83.CrossRefGoogle Scholar
  22. 22.
    Sengupta P, Basu S, Soni S, Pandey A, Roy B, Oh MS, Chin KT, Paraskar AS, Sarangi S, Connor Y, et al. Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity. Proc Natl Acad Sci U S A. 2012;109:11294–9.CrossRefGoogle Scholar
  23. 23.
    Wang J, Wang X, Song Y, Zhu C, Wang K, Guo Z. Detecting and delivering platinum anticancer drugs using fluorescent maghemite nanoparticles. Chem Commun (Camb). 2013;49:2786–8.CrossRefGoogle Scholar
  24. 24.
    Yang J, Sun X, Mao W, Sui M, Tang J, Shen Y. Conjugate of Pt(IV)-histone deacetylase inhibitor as a prodrug for cancer chemotherapy. Mol Pharm. 2012;9:2793–800.CrossRefGoogle Scholar
  25. 25.
    Yoshihisa Y, Zhao QL, Hassan MA, Wei ZL, Furuichi M, Miyamoto Y, Kondo T, Shimizu T. SOD/catalase mimetic platinum nanoparticles inhibit heat-induced apoptosis in human lymphoma U937 and HH cells. Free Radic Res. 2011;45:326–35.CrossRefGoogle Scholar
  26. 26.
    Hikosaka K, Kim J, Kajita M, Kanayama A, Miyamoto Y. Platinum nanoparticles have an activity similar to mitochondrial NADH: ubiquinone oxidoreductase. Colloids Surf B. 2008;66:195–200.CrossRefGoogle Scholar
  27. 27.
    Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res. 2007;41:615–26.CrossRefGoogle Scholar
  28. 28.
    Nellore J, Pauline C, Amarnath K. Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-methyl 4-phenyl 1, 2, 3, 6 tetrahydropyridine-induced experimental parkinsonism in zebrafish. J Neurodegener Disord. 2013;2013:972391.Google Scholar
  29. 29.
    Porcel E, Liehn S, Remita H, Usami N, Koayashi K, Furusawa Y, Lesech C, Lacombe S. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology. 2010;21:085103–10.CrossRefGoogle Scholar
  30. 30.
    Manikandan M, Hasan N, Wu HF. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials. 2013;34:5833–42.CrossRefGoogle Scholar
  31. 31.
    Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R. Can phytochemical antioxidant rich foods act as anti-cancer agents? Food Res Int. 2011;44:2545–54.CrossRefGoogle Scholar
  32. 32.
    Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134:3479S–85S.Google Scholar
  33. 33.
    Marchand L, Murphy S, Hankin JH, Wikens LR, Kolonel LN. Intake of flavonoids and lung cancer. J Natl Cancer Inst. 2000;92:154–60.CrossRefGoogle Scholar
  34. 34.
    Sun J, Liu RH. Cranberry phytochemical extracts induce cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. Cancer Lett. 2006;241:124–34.CrossRefGoogle Scholar
  35. 35.
    Lee YJ, Lee YJ, Im JH, Won SY, Kim YB, Cho MK, Nam HS, Choi YJ, Lee SH. Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells. Food Chem Toxicol. 2013;52:61–8.CrossRefGoogle Scholar
  36. 36.
    Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 2003;43:89.CrossRefGoogle Scholar
  37. 37.
    Periasamy VS, Alshatwi AA. Tea polyphenols modulate antioxidant redox system on cisplatin-induced reactive oxygen species generation in a human breast cancer cell. Basic Clin Pharmacol Toxicol. 2013;112:374–84.CrossRefGoogle Scholar
  38. 38.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. CA Cancer J Clin. 2005;55:74–108.CrossRefGoogle Scholar
  39. 39.
    World d Health Organization (WHO)/InstitutCatalàd’Oncologia (ICO). Summary report. 3rd ed. London: WHO/ICO Information Centre; 2010.Google Scholar
  40. 40.
    Blagosklonny MV, El-Deiry WS. In vitro evaluation of a p53-expressing adenovirus as an anti-cancer drug. Int J Cancer. 1996;67:386–92.CrossRefGoogle Scholar
  41. 41.
    Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2008;10:507–17.CrossRefGoogle Scholar
  42. 42.
    Asmathunisha N, Kathiresan K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B. 2013;103:283–7.CrossRefGoogle Scholar
  43. 43.
    Kim EY, Ham SK, Shigenaga MK, Han O. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers. J Nutr. 2008;138:1647–51.CrossRefGoogle Scholar
  44. 44.
    Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10:859–62.CrossRefGoogle Scholar
  45. 45.
    Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale. 2010;2:763–70.CrossRefGoogle Scholar
  46. 46.
    Venu R, Ramulu TS, Anandakumar S, Rani VS, Kim CG. Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloid Surf A. 2011;384:733–8.CrossRefGoogle Scholar
  47. 47.
    Ray PC. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev. 2010;110:5332–65.CrossRefGoogle Scholar
  48. 48.
    Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B. 2000;104:10549–56.CrossRefGoogle Scholar
  49. 49.
    Smitha SL, Nissamudeen KM, Philip D, Gopchandra KG. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A.Mol Biomol Spectrosc. 2008;71:186.CrossRefGoogle Scholar
  50. 50.
    Kalimutho M, Minutolo A, Grelli S, Formosa A, Sancesario G, Valentini A, Federici G, Bernardini S. Satraplatin (JM-216) mediates G2/M cell cycle arrest and potentiates apoptosis via multiple death pathways in colorectal cancer cells thus overcoming platinum chemo-resistance. Cancer Chemother Pharmacol. 2011;67:1299–312.CrossRefGoogle Scholar
  51. 51.
    Farabegoli F, Papi A, Bartolini G, Ostan R, Orlandi M. (-)-Epigallocatechin-3-gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line. Phytomedicine. 2010;17:356–62.CrossRefGoogle Scholar
  52. 52.
    Ahmed K, Wei Z, Zhao Q, Nakajima N, Matsunaga T, Ogasawara M, Kondo T. Role of fatty acid chain length on the induction of apoptosis by newly synthesized catechin derivatives. Chem Biol Interact. 2010;185:182–8.CrossRefGoogle Scholar
  53. 53.
    Alshatwi AA. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J Exp Clin Cancer Res. 2011;29:167–76.CrossRefGoogle Scholar
  54. 54.
    Shingu T, Chumbalkar VC, Gwak HS, Fujiwara K, Kondo S, Farrell NP, Bogler O. The polynuclear platinum BBR3610 induces G2/M arrest and autophagy early and apoptosis late in glioma cells. Neuro-oncology. 2010;12:1269–77.Google Scholar
  55. 55.
    Passalaris TM, Benanti JA, Gewin L, Kiyono T, Galloway DA. The G2 checkpoint is maintained by redundant pathways. Mol Cell Biol. 1999;19:5872–81.CrossRefGoogle Scholar
  56. 56.
    Sorenson CM, Barry MA, Eastman A. Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin. J Natl Cancer Inst. 1990;82:749–55.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ali A. Alshatwi
    • 1
  • Jegan Athinarayanan
    • 1
  • Periasamy Vaiyapuri Subbarayan
    • 1
  1. 1.Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and AgricultureKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations