Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 25, Issue 12, pp 2711–2720 | Cite as

Evaluation of new bone formation in irradiated areas using association of mesenchymal stem cells and total fresh bone marrow mixed with calcium phosphate scaffold

  • P. Bléry
  • P. Corre
  • O. Malard
  • S. Sourice
  • P. Pilet
  • Y. Amouriq
  • J. Guicheux
  • P. Weiss
  • F. Espitalier
Article

Abstract

The consequences of the treatment of the squamous cell carcinomas of the upper aerodigestive tract (bone removal and external radiation therapy) are constant. Tissue engineering using biphasic calcium phosphate (BCP) and mesenchymal stem cells (MSC) is considered as a promising alternative. We previously demonstrated the efficacy of BCP and total fresh bone marrow (TBM) in regenerating irradiated bone defect. The aim of this study was to know if adding MSC to BCP + TBM mixture could improve the bone formation in irradiated bone defects. Twenty-four Lewis 1A rats received a single dose of 20 Gy to the hind limbs. MSC were sampled from non-irradiated donors and amplified in proliferative, and a part in osteogenic, medium. 3 weeks after, defects were created on femurs and tibias, which were filled with BCP alone, BCP + TBM, BCP + TBM + uncommitted MSC, or BCP + TBM + committed MSC. 3 weeks after, samples were removed and prepared for qualitative and quantitative analysis. The rate of bone ingrowth was significantly higher after implantation of BCP + TBM mixture. The adding of a high concentration of MSC, committed or not, didn’t improve the bone regeneration. The association BCP + TBM remains the most efficient material for bone substitution in irradiated areas.

Keywords

Bone Formation Mesenchymal Stem Cell Bone Defect Osteogenic Differentiation Bone Ingrowth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Grants from “La Ligue Contre Le Cancer” foundation, committees “Pays de La Loire” and “Côtes d’Armor”. We thank Biomatlante (Vigneux de Bretagne, France) for supplying materials. We thank Doctor Marion Eveillard for the bone marrow myelographic analysis.

Conflict of interest

The authors declare no industrial conflict of interest.

References

  1. 1.
    Gal TJ, Munoz-Antonia T. Radiation effects on osteoblasts in vitro: a potential role in osteoradionecrosis. Arch Otolaryngol Neck Surg. 2000;126:1124–8.CrossRefGoogle Scholar
  2. 2.
    Dudziak ME, Saadeh PB, Mehrara BJ, Steinbrech DS, Greenwald JA, Gittes GK, et al. The effects of ionizing radiation on osteoblast-like cells in vitro. Plast Reconstr Surg. 2000;106:1049–61.CrossRefGoogle Scholar
  3. 3.
    Hopewell JW. Radiation-therapy effects on bone density. Med Pediatr Oncol. 2003;41:208–11.CrossRefGoogle Scholar
  4. 4.
    Jegoux F, Malard O, Goyenvalle E, Aguado E, Daculsi G. Radiation effects on bone healing and reconstruction: interpretation of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontology. 2010;109:173–84.CrossRefGoogle Scholar
  5. 5.
    Little JB. Cellular, molecular, and carcinogenic effects of radiation. Hematol Oncol Clin North Am. 1993;7:337–52.Google Scholar
  6. 6.
    Lerouxel E, Moreau A, Bouler JM, Giumelli B, Daculsi G, Weiss P, et al. Effects of high doses of ionising radiation on bone in rats: a new model for evaluation of bone engineering. Br J Oral Maxillofac Surg. 2009;47:602–7.CrossRefGoogle Scholar
  7. 7.
    Head C, Alam D, Sercarz JA, Lee JT, Rawnsley JD, Berke GS, et al. Microvascular flap reconstruction of the mandible: a comparison of bone grafts and bridging plates for restoration of mandibular continuity. Otolaryngol Head Neck Surg. 2003;129:48–54.CrossRefGoogle Scholar
  8. 8.
    Goh BT, Lee S, Tideman H, Stoelinga PJW. Mandibular reconstruction in adults: a review. Int J Oral Maxillofac Surg. 2008;37:597–605.CrossRefGoogle Scholar
  9. 9.
    LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop. 2002;395:81–98.CrossRefGoogle Scholar
  10. 10.
    Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254:317–30.CrossRefGoogle Scholar
  11. 11.
    Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18:959–63.CrossRefGoogle Scholar
  12. 12.
    Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 1997;6:125–34.CrossRefGoogle Scholar
  13. 13.
    Ohgushi H, Goldberg VM, Caplan AI. Repair of bone defects with marrow cells and porous ceramic experiments in rats. Acta Orthop Scand. 1989;60:334–9.CrossRefGoogle Scholar
  14. 14.
    Yuan J, Cui L, Zhang WJ, Liu W, Cao Y. Repair of canine mandibular bone defects with bone marrow stromal cells and porous β-tricalcium phosphate. Biomaterials. 2007;28:1005–13.CrossRefGoogle Scholar
  15. 15.
    Mankani MH, Kuznetsov SA, Shannon B, Nalla RK, Ritchie RO, Qin Y, et al. Canine cranial reconstruction using autologous bone marrow stromal cells. Am J Pathol. 2006;168:542–50.CrossRefGoogle Scholar
  16. 16.
    Lerouxel E, Weiss P, Giumelli B, Moreau A, Pilet P, Guicheux J, et al. Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: an experimental study in rats. Biomaterials. 2006;27:4566–72.CrossRefGoogle Scholar
  17. 17.
    Malard O, Guicheux J, Bouler J-M, Gauthier O, Beauvillain de Montreuil C, Aguado E, et al. Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study. Bone. 2005;36:323–30.CrossRefGoogle Scholar
  18. 18.
    Espitalier F, Vinatier C, Lerouxel E, Guicheux J, Pilet P, Moreau F, et al. A comparison between bone reconstruction following the use of mesenchymal stem cells and total bone marrow in association with calcium phosphate scaffold in irradiated bone. Biomaterials. 2009;30:763–9.CrossRefGoogle Scholar
  19. 19.
    Malard O, Bouler JM, Guicheux J, Heymann D, Pilet P, Coquard C, et al. Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res. 1999;46:103–11.CrossRefGoogle Scholar
  20. 20.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.CrossRefGoogle Scholar
  21. 21.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefGoogle Scholar
  22. 22.
    Kitoh H, Kitakoji T, Tsuchiya H, Mitsuyama H, Nakamura H, Katoh M, et al. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone. 2004;35:892–8.CrossRefGoogle Scholar
  23. 23.
    Morishita T, Honoki K, Ohgushi H, Kotobuki N, Matsushima A, Takakura Y. Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artif Organs. 2006;30:115–8.CrossRefGoogle Scholar
  24. 24.
    Merceron C, Vinatier C, Portron S, Masson M, Amiaud J, Guigand L, et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol. 2010;298:C355–64.CrossRefGoogle Scholar
  25. 25.
    Skedros JG, Bloebaum RD, Bachus KN, Boyce TM, Constantz B. Influence of mineral content and composition on graylevels in backscattered electron images of bone. J Biomed Mater Res. 1993;27:57–64.CrossRefGoogle Scholar
  26. 26.
    Monti P, Wysocki J, van der Meeren A, Griffiths NM. The contribution of radiation-induced injury to the gastrointestinal tract in the development of multi-organ dysfunction syndrome or failure. BJR Suppl BIR. 2005;27:89–94.CrossRefGoogle Scholar
  27. 27.
    Dumas J. Rats d’élevage—Les animaux de laboratoire. Paris: Flammarion; 1953.Google Scholar
  28. 28.
    Bouler J-M, LeGeros RZ, Daculsi G. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/β-TCP ratio. J Biomed Mater Res. 2000;51:680–4.CrossRefGoogle Scholar
  29. 29.
    Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res. 1999;48:913–27.CrossRefGoogle Scholar
  30. 30.
    Miura M, Miura Y, Sonoyama W, Yamaza T, Gronthos S, Shi S. Bone marrow-derived mesenchymal stem cells for regenerative medicine in craniofacial region. Oral Dis. 2006;12:514–22.CrossRefGoogle Scholar
  31. 31.
    Cuturi M-C, Josien R, Cantarovich D, Bugeon L, Anegon I, Menoret S, et al. Decreased anti-donor major histocompatibility complex class I and increased class II alloantibody response in allograft tolerance in adult rats. Eur J Immunol. 1994;24:1627–31.CrossRefGoogle Scholar
  32. 32.
    Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.CrossRefGoogle Scholar
  33. 33.
    Cornejo A, Sahar DE, Stephenson SM, Chang S, Nguyen S, Guda T, et al. Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng Part A. 2012;18:1552–61.CrossRefGoogle Scholar
  34. 34.
    Aguirre A, Planell JA, Engel E. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem Biophys Res Commun. 2010;400:284–91.CrossRefGoogle Scholar
  35. 35.
    Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 2006;20:161–71.CrossRefGoogle Scholar
  36. 36.
    Phulpin B, Dolivet G, Marie P-Y, Poussier S, Huger S, Bravetti P, et al. Feasibility of treating irradiated bone with intramedullary delivered autologous mesenchymal stem cells. J Biomed Biotechnol. 2011;2011:1–9.CrossRefGoogle Scholar
  37. 37.
    Boukhechba F, Balaguer T, Bouvet-Gerbettaz S, Michiels J-F, Bouler J-M, Carle GF, et al. Fate of bone marrow stromal cells in a syngenic model of bone formation. Tissue Eng Part A. 2011;17:2267–78.CrossRefGoogle Scholar
  38. 38.
    Green DE, Adler BJ, Chan ME, Rubin CT. Devastation of adult stem cell pools by irradiation precedes collapse of trabecular bone quality and quantity. J Bone Miner Res. 2012;27:749–59.CrossRefGoogle Scholar
  39. 39.
    Evans HB, Brown S, Hurst LN. The effects of early postoperative radiation on vascularized bone grafts. Ann Plast Surg. 1991;26:505–10.CrossRefGoogle Scholar
  40. 40.
    Fenner M, Park J, Schulz N, Amann K, Grabenbauer GG, Fahrig A, et al. Validation of histologic changes induced by external irradiation in mandibular bone. An experimental animal model. J Cranio-Maxillofac Surg. 2010;38:47–53.CrossRefGoogle Scholar
  41. 41.
    Willey JS, Lloyd SAJ, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, et al. Early increase in osteoclast number in mice after whole-body irradiation with 2 gy X rays. Radiat Res. 2008;170:388–92.CrossRefGoogle Scholar
  42. 42.
    Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci. 2011;108:1609–14.CrossRefGoogle Scholar
  43. 43.
    Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA. Growth factor regulation of fracture repair. J Bone Miner Res. 1999;14:1805–15.CrossRefGoogle Scholar
  44. 44.
    Murphy WL, Simmons CA, Kaigler D, Mooney DJ. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res. 2004;83:204–10.CrossRefGoogle Scholar
  45. 45.
    Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today. 2003;8:980–9.CrossRefGoogle Scholar
  46. 46.
    Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med. 2004;8:498–508.CrossRefGoogle Scholar
  47. 47.
    Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med. 2011;17:1594–601.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • P. Bléry
    • 1
    • 2
    • 3
    • 4
    • 5
  • P. Corre
    • 1
    • 2
    • 4
    • 6
  • O. Malard
    • 1
    • 2
    • 4
    • 7
  • S. Sourice
    • 1
    • 2
  • P. Pilet
    • 1
    • 2
    • 4
  • Y. Amouriq
    • 1
    • 2
    • 3
    • 4
    • 5
  • J. Guicheux
    • 1
    • 2
    • 4
  • P. Weiss
    • 1
    • 2
    • 3
    • 4
  • F. Espitalier
    • 1
    • 2
    • 4
    • 7
  1. 1.INSERM, UMR-S 791, Laboratoire d’Ingénierie Ostéo-Articulaire et Dentaire, LIOADNantes Cedex 1France
  2. 2.Université de Nantes, Laboratoire d’Ingénierie Ostéo-Articulaire et Dentaire, LIOADNantes Cedex 1France
  3. 3.Université de Nantes, Faculté de Chirurgie DentaireNantes Cedex 1France
  4. 4.CHU Nantes, PHU 4 OTONNNantes Cedex 1France
  5. 5.CHU Nantes, PHU 4 OTONN, Service d’Odontologie Restauratrice et ChirurgicaleNantes Cedex 1France
  6. 6.CHU Nantes, PHU 4 OTONN, Service de Stomatologie et de Chirurgie Maxillo-FacialeNantes Cedex 1France
  7. 7.CHU Nantes, PHU 4 OTONN, Service d’ORL et de Chirurgie Cervico-FacialeNantes Cedex 1France

Personalised recommendations