Design and characterization of a chitosan physical gel promoting wound healing in mice

  • Laura Mayol
  • Daniela De Stefano
  • Virginia Campani
  • Francesca De Falco
  • Eleonora Ferrari
  • Claudia Cencetti
  • Pietro Matricardi
  • Luigi Maiuri
  • Rosa Carnuccio
  • Angela Gallo
  • Maria Chiara Maiuri
  • Giuseppe De RosaEmail author


In this study, a sterile and biocompatible chitosan (CHI) gel for wound healing applications was formulated. CHI powder was treated in autoclave (ttCHI) to prepare sterile formulations. The heat treatment modified the CHI molecular weight, as evidenced by GPC analysis, and its physical–chemical features. Differential scanning calorimetry studies indicated that the macromolecules, before and after thermal treatment, differ in the strength of water-polymer interaction leading to different viscoelastic and flow properties. Thermally treated CHI exhibited the following effects: (i) increased the proliferation and migration of human foreskin foetal fibroblasts at 24 h; (ii) accelerated wound healing (measured as area of lesion) at 3 and 10 days in an in vivo model of pressure ulcers. These effects were linked to the increase of the hydroxyproline and haemoglobin content as well as Wnt protein expression. Moreover, we found a reduction of myeloperoxidase activity and TNF-α mRNA expression. These observations suggest the potential of this novel CHI gel in wound healing and other therapeutic applications.


Chitosan Wound Healing Pressure Ulcer HTAB Differential Scanning Calorimeter Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Italian “Ministero della Salute” (Grant: Progetto Giovani Ricercatori – annualità 2007). The authors thank Dr. Manuela Gavina for her technical support.

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18:567–75.CrossRefGoogle Scholar
  2. 2.
    Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339–49.CrossRefGoogle Scholar
  3. 3.
    Costa-Pinto AR, Reis RL, Neves NM. Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev. 2011;17:331–47.CrossRefGoogle Scholar
  4. 4.
    Kim J, Kim SW, Choi SJ, Lim KT, Lee JB, Seonwoo H, Choung PH, Park K, Cho CS, Choung YH, Chung J. H.A healing method of tympanic membrane perforations using three-dimensional porous chitosan scaffolds. Tissue Eng Part A. 2011;17:2763–72.CrossRefGoogle Scholar
  5. 5.
    Wang W, Lin S, Xiao Y, Huang Y, Tan Y, Cai L, Li X. Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci. 2008;82:190–204.CrossRefGoogle Scholar
  6. 6.
    Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Opanasopit P. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. Int Wound J. 2012;. doi: 10.1111/j.1742-481X.2012.01077.x.Google Scholar
  7. 7.
    Chen YC, Ho HO, Lee TY, Sheu MT. Physical characterizations and sustained release profiling of gastroretentive drug delivery systems with improved floating and swelling capabilities. Int J Pharm. 2013;441:162–9.CrossRefGoogle Scholar
  8. 8.
    Liang N, Sun S, Li X, Piao H, Piao H, Cui F, Fang L. Alpha-tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: preparation, characterization and in vitro/in vivo evaluations. Int J Pharm. 2012;423:480–8.CrossRefGoogle Scholar
  9. 9.
    Amarnath K, Kumar J, Reddy T, Mahesh V, Ayyappan SR, Nellore J. Synthesis and characterization of chitosan and grape polyphenols stabilized palladium nanoparticles and their antibacterial activity. Colloids Surf B. 2012;92:254–61.CrossRefGoogle Scholar
  10. 10.
    Kumar S, Koh J. Physiochemical and optical study of chitosan-terephthaldehyde derivative for biomedical applications. Int J Biol Macromol. 2012;51:1167–72.CrossRefGoogle Scholar
  11. 11.
    Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97:2892–923.CrossRefGoogle Scholar
  12. 12.
    Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev. 2001;52:105–15.CrossRefGoogle Scholar
  13. 13.
    Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother. 1990;34:2019–23.CrossRefGoogle Scholar
  14. 14.
    Cho YW, Cho YN, Chung SH, Yoo G, Ko SW. Water-soluble chitin as a wound healing accelerator. Biomaterials. 1999;20:2139–45.CrossRefGoogle Scholar
  15. 15.
    Kweon DK, Song SB, Park YY. Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator. Biomaterials. 2003;24:1595–601.CrossRefGoogle Scholar
  16. 16.
    Okan D, Woo K, Ayello EA, Sibbald G. The role of moisture balance in wound healing. Adv Skin Wound Care. 2007;20:39–53.CrossRefGoogle Scholar
  17. 17.
    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57:19–34.CrossRefGoogle Scholar
  18. 18.
    Lu B, Xiong SB, Yang H, Yin XD, Zhao RB. Mitoxantrone-loaded BSA nanospheres and chitosan nanospheres for local injection against breast cancer and its lymph node metastases. I. Formulation and in vitro characterization. Int J Pharm. 2006;307:168–74.CrossRefGoogle Scholar
  19. 19.
    Zahraoui C, Sharrock P. Influence of sterilization on injectable bone biomaterials. Bone. 1999;25:63S–5S.CrossRefGoogle Scholar
  20. 20.
    Sandri G, Bonferoni MC, Rossi S, Ferrari F, Mori M, Del Fante C, Perotti C, Scudeller L, Caramella C. Platelet lysate formulations based on mucoadhesive polymers for the treatment of corneal lesions. J Pharm Pharmacol. 2011;63:189–98.CrossRefGoogle Scholar
  21. 21.
    Jarry C, Leroux JC, Haeck J, Chaput C. Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-beta-glycerophosphate systems. Chem Pharm Bull (Tokyo). 2002;50:1335–40.CrossRefGoogle Scholar
  22. 22.
    Mayol L, Biondi M, Quaglia F, Fusco S, Borzacchiello A, Ambrosio L, La Rotonda MI. Injectable thermally responsive mucoadhesive gel for sustained protein delivery. Biomacromolecules. 2011;12:28–33.CrossRefGoogle Scholar
  23. 23.
    Biondi M, Fusco S, Lewis AL, Netti PA. New insights into the mechanisms of the interactions between doxorubicin and the ion-exchange hydrogel DC Bead for use in transarterial chemoembolization (TACE). J Biomater Sci Polym Ed. 2012;23:333–54.CrossRefGoogle Scholar
  24. 24.
    Kasaai MR, Arul J, Charlet C. Intrinsic viscosity-molecular weight relationship for chitosan. J Polym Sci B. 2000;38:2591–8.CrossRefGoogle Scholar
  25. 25.
    De Stefano D, De Rosa G, Maiuri MC, Ungaro F, Quaglia F, Iuvone T, Cinelli MP, La Rotonda MI, Carnuccio R. Oligonucleotide decoy to NF-kappaB slowly released from PLGA microspheres reduces chronic inflammation in rat. Pharmacol Res. 2009;60:33–40.CrossRefGoogle Scholar
  26. 26.
    Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJ. Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater. 2009;5:1926–36.CrossRefGoogle Scholar
  27. 27.
    Woessner JF. Jr.The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93:440–7.CrossRefGoogle Scholar
  28. 28.
    De Filippis D, Russo A, D’Amico A, Esposito G, Pietropaolo C, Cinelli M, Russo G, Iuvone T. Cannabinoids reduce granuloma-associated angiogenesis in rats by controlling transcription and expression of mast cell protease-5. Br J Pharmacol. 2008;154:1672–9.CrossRefGoogle Scholar
  29. 29.
    Casimiro MH, Gil MH, Leal JP. Suitability of gamma irradiated chitosan based membranes as matrix in drug release system. Int J Pharm. 2010;395:142–6.CrossRefGoogle Scholar
  30. 30.
    Cho HJ, Balakrishnan P, Park EK, Song KW, Hong SS, Jang TY, Kim KS, Chung SJ, Shim CK, Kim DD. Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. J Pharm Sci. 2011;100:681–91.CrossRefGoogle Scholar
  31. 31.
    Mayol L, Biondi M, Russo L, Malle BM, Schwach-Abdellaoui K, Borzacchiello A. Amphiphilic hyaluronic acid derivatives towards the design of micelles for the sustained delivery of hydrophobic drugs. Carbohydr Polym. 2014;102:110–6.CrossRefGoogle Scholar
  32. 32.
    Picout DR, Ross-Murphy SB. Rheology of biopolymer solutions and gels. Sci World J. 2003;3:105–21.CrossRefGoogle Scholar
  33. 33.
    Ferry JD. Viscoelastic properties of polymers, vol. 3. New York: Wiley; 1980.Google Scholar
  34. 34.
    Cohen IK, Mast BA. Models of wound healing. J Trauma. 1990;30:S149–55.CrossRefGoogle Scholar
  35. 35.
    Edsberg LE, Wyffels JT, Brogan MS, Fries KM. Analysis of the proteomic profile of chronic pressure ulcers. Wound Repair Regen. 2012;20:378–401.CrossRefGoogle Scholar
  36. 36.
    Sener G, Sert G, Ozer SA, Arbak S, Uslu B, Gedik N, Ayanoglu-Dulger G. Pressure ulcer-induced oxidative organ injury is ameliorated by beta-glucan treatment in rats. Int Immunopharmacol. 2006;6:724–32.CrossRefGoogle Scholar
  37. 37.
    Widelitz RB. Wnt signaling in skin organogenesis. Organogenesis. 2008;4:123–33.CrossRefGoogle Scholar
  38. 38.
    Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci. 2013;70:2059–81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laura Mayol
    • 1
  • Daniela De Stefano
    • 1
  • Virginia Campani
    • 1
  • Francesca De Falco
    • 1
  • Eleonora Ferrari
    • 1
  • Claudia Cencetti
    • 2
  • Pietro Matricardi
    • 2
  • Luigi Maiuri
    • 3
  • Rosa Carnuccio
    • 1
  • Angela Gallo
    • 4
  • Maria Chiara Maiuri
    • 1
    • 5
  • Giuseppe De Rosa
    • 1
    Email author
  1. 1.Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IINaplesItaly
  2. 2.Department of Drug Chemistry and Technologies“Sapienza” University of RomeRomeItaly
  3. 3.Institute of PediatricsUniversity of FoggiaFoggiaItaly
  4. 4.Farmacia OspedalieraAzienda Ospedaliera di Rilievo Nazionale “Antonio Cardarelli”NaplesItaly
  5. 5.INSERM U848, Institut G. Roussy, 39 rue C. DesmoulinsVillejuifFrance

Personalised recommendations