Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites

  • Harshit Porwal
  • Salvatore Grasso
  • Luis Cordero-Arias
  • Chunchun Li
  • Aldo R. Boccaccini
  • Mike J. ReeceEmail author


Well dispersed 45S5 Bioglass® (BG)-graphene nanoplatelets (GNP) composites were prepared after optimising the processing conditions. Fully dense BG nanocomposites with GNP loading of 1, 3 and 5 vol% were consolidated using Spark plasma sintering (SPS). SPS avoided any structural damage of GNP as confirmed using Raman spectroscopy. GNP increased the viscosity of BG-GNP composites resulting in an increase in the sintering temperature by ~50 °C compared to pure BG. Electrical conductivity of BG-GNP composites increased with increasing concentration of GNP. The highest conductivity of 13 S/m was observed for BG-GNP (5 vol%) composite which is ~9 orders of magnitude higher compared to pure BG. For both BG and BG-GNP composites, in vitro bioactivity testing was done using simulated body fluid for 1 and 3 days. XRD confirmed the formation of hydroxyapatite for BG and BG-GNP composites with cauliflower structures forming on top of the nano-composites surface. GNP increased the electrical conductivity of BG-GNP composites without affecting the bioactivity thus opening the possibility to fabricate bioactive and electrically conductive scaffolds for bone tissue engineering.


Simulated Body Fluid Spark Plasma Sinter Bone Tissue Engineering Powder Processing Colloidal Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank European Union’s Seventh Framework Programme managed by REA-Research Executive Agency (Marie Curie Action, GlaCERCo GA 264526) for their support and funding for this research. We are also grateful to Dr. Mahesh Kumar Mani (Cardiff University, UK) and Mr Rama Krishna Chinnam (University of Erlangen-Nuremberg, Germany) for helping with some experiments.


  1. 1.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res A. 1971;5(6):117.CrossRefGoogle Scholar
  2. 2.
    Hench LL. The story of Bioglass (R). J Mater Sci-Mater M. 2006;17(11):967–78. doi: 10.1007/s10856-006-0432-z.CrossRefGoogle Scholar
  3. 3.
    Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19(16):1419–23. doi: 10.1016/S0142-9612(98)00133-1.CrossRefGoogle Scholar
  4. 4.
    Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20(23–24):2287–303. doi: 10.1016/S0142-9612(99)00181-7.CrossRefGoogle Scholar
  5. 5.
    Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP. Bioactive glass coatings for orthopedic metallic implants. J Eur Ceram Soc. 2003;23(15):2921–30. doi: 10.1016/S0955-2219(03)00303-0.CrossRefGoogle Scholar
  6. 6.
    Bahniuk MS, Pirayesh H, Singh HD, Nychka JA, Unsworth LD. Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma. Biointerphases. 2012;7(1–4):41. doi: 10.1007/S13758-012-0041-Y.Google Scholar
  7. 7.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Bioph Res Co. 2000;276(2):461–5. doi: 10.1006/bbrc.2000.3503.CrossRefGoogle Scholar
  8. 8.
    Cao WP, Hench LL. Bioactive materials. Ceram Int. 1996;22(6):493–507. doi: 10.1016/0272-8842(95)00126-3.CrossRefGoogle Scholar
  9. 9.
    Drnovsek N, Novak S, Dragin U, Ceh M, Gorensek M, Gradisar M. Bioactive glass enhances bone ingrowth into the porous titanium coating on orthopaedic implants. Int Orthop. 2012;36(8):1739–45. doi: 10.1007/s00264-012-1520-y.CrossRefGoogle Scholar
  10. 10.
    Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2010;16(2):199–207. doi: 10.1089/ten.teb.2009.0416.CrossRefGoogle Scholar
  11. 11.
    Zhang D, Lepparanta O, Munukka E, Ylanen H, Viljanen MK, Eerola E, et al. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A. 2010;93A(2):475–83. doi: 10.1002/Jbm.A.32564.Google Scholar
  12. 12.
    Anderson AB, Dallmier AW, Chudzik SJ, Duran LW, Guire PE, Hergenrother RW, et al. Technologies for the surface modification of biomaterials. In: Yaszemski MJ, Trantolo DJ, Lewandrowski KU, Hasirci V, Altobelli DE, Wise DL, editors. Biomaterials in orthopedics. New York: Marcel Dekker Inc; 2004. p. 123. Google Scholar
  13. 13.
    Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25(1):15–34. doi: 10.1021/Tx200339h.CrossRefGoogle Scholar
  14. 14.
    Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R. Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res. 2002;59(3):499–506. doi: 10.1002/Jbm5.CrossRefGoogle Scholar
  15. 15.
    Hrapovic S, Liu YL, Male KB, Luong JHT. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem. 2004;76(4):1083–8. doi: 10.1021/Ac035143t.CrossRefGoogle Scholar
  16. 16.
    Khang D, Park GE, Webster TJ. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. J Biomed Mater Res A. 2008;86A(1):253–60. doi: 10.1002/Jbm.A.31803.CrossRefGoogle Scholar
  17. 17.
    Yang WR, Thordarson P, Gooding JJ, Ringer SP, Braet F. Carbon nanotubes for biological and biomedical applications. Nanotechnology. 2007;18(41):412001. doi: 10.1088/0957-4484/18/41/412001. Google Scholar
  18. 18.
    Li XM, Gao H, Uo M, Sato Y, Akasaka T, Feng QL, et al. Effect of carbon nanotubes on cellular functions in vitro. J Biomed Mater Res A. 2009;91A(1):132–9. doi: 10.1002/Jbm.A.32203.CrossRefGoogle Scholar
  19. 19.
    Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006;6(3):562–7. doi: 10.1021/Nl051861e.CrossRefGoogle Scholar
  20. 20.
    Meng D, Rath SN, Mordan N, Salih V, Kneser U, Boccaccini AR. In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes. J Biomed Mater Res A. 2011;99A:435–44.CrossRefGoogle Scholar
  21. 21.
    Afrin R, Khaliq J, Islam M, Gul IH, Bhatti AS, Manzoord U. Synthesis of multiwalled carbon nanotube-based infrared radiation detector. Sensor Actuat a-Phys. 2012;187:73–8. doi: 10.1016/j.sna.2012.08.028.CrossRefGoogle Scholar
  22. 22.
    Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8. doi: 10.1126/science.1157996.CrossRefGoogle Scholar
  23. 23.
    Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91.CrossRefGoogle Scholar
  24. 24.
    Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7. doi: 10.1021/Nl0731872.CrossRefGoogle Scholar
  25. 25.
    Porwal H, Tatarko P, Grasso S, Hu C, Boccaccini AR, Dlouhý I et al. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. Sci Technol Adv Mat. 2013;14:055007. doi: 10.1088/1468-6996/14/5/055007.
  26. 26.
    Fan YC, Wang LJ, Li JL, Li JQ, Sun SK, Chen F, et al. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon. 2010;48(6):1743–9. doi: 10.1016/j.carbon.2010.01.017.CrossRefGoogle Scholar
  27. 27.
    Cho J, Boccaccini AR, Shaffer MSP. Ceramic matrix composites containing carbon nanotubes. J Mater Sci. 2009;44(8):1934–51. doi: 10.1007/s10853-009-3262-9.CrossRefGoogle Scholar
  28. 28.
    Fabbri P, Valentini L, Hum J, Detsch R, Boccaccini AR. 45S5 Bioglass®-derived scaffolds coated with organic–inorganic hybrids containing graphene. Mater Sci Eng C. 2013;33(7):3592–600.CrossRefGoogle Scholar
  29. 29.
    Porwal H, Grasso S, Reece M. Review of graphene-ceramic matrix composites. Adv Appl Ceram. 2013;112(8):443. doi: 10.1179/174367613X13764308970581.CrossRefGoogle Scholar
  30. 30.
    Walker LS, Marotto VR, Rafiee MA, Koratkar N, Corral EL. Toughening in graphene ceramic composites. ACS Nano. 2011;5(4):3182–90. doi: 10.1021/Nn200319d.CrossRefGoogle Scholar
  31. 31.
    Kvetkova L, Duszova A, Hvizdos P, Dusza J, Kun P, Balazsi C. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Mater. 2012;66(10):793–6. doi: 10.1016/j.scriptamat.2012.02.009.CrossRefGoogle Scholar
  32. 32.
    Grasso S, Chinnam RK, Porwal H, Boccaccini AR, Reece MJ. Low temperature spark plasma sintering of 45S5 Bioglass®. J Non-Cryst Solids. 2013;362:25–9.CrossRefGoogle Scholar
  33. 33.
    Porwal H, Tatarko P, Grasso S, Khaliq J, Dlouhý I, Reece M. Graphene reinforced alumina nano-composites. Carbon. 2013;64:359–69. doi: 10.1016/j.carbon.2013.07.086.CrossRefGoogle Scholar
  34. 34.
    Khan U, O’Neill A, Lotya M, De S, Coleman JN. High-concentration solvent exfoliation of graphene. Small. 2010;6(7):864–71. doi: 10.1002/smll.200902066.CrossRefGoogle Scholar
  35. 35.
    Yi M, Shen ZG, Zhang XJ, Ma SL. Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. J Phys D Appl Phys. 2013;46(2):025301. doi: 10.1088/0022-3727/46/2/025301.
  36. 36.
    Khan U, O’Neill A, Porwal H, May P, Nawaz K, Coleman JN. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon. 2012;50(2):470–5. doi: 10.1016/j.carbon.2011.09.001.CrossRefGoogle Scholar
  37. 37.
    Khan U, May P, Porwal H, Nawaz K, Coleman JN. Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. Acs Appl Mater Inter. 2013;5(4):1423–8. doi: 10.1021/Am302864f.CrossRefGoogle Scholar
  38. 38.
    Tadashi Kokubo HT. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15.CrossRefGoogle Scholar
  39. 39.
    Bednarcik J, Michalik S, Kolesar V, Rutt U, Franz H. In situ XRD studies of nanocrystallization of Fe-based metallic glass: a comparative study by reciprocal and direct space methods. Phys Chem Chem Phys. 2013;15(22):8470–9. doi: 10.1039/C3cp44445g.CrossRefGoogle Scholar
  40. 40.
    Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10(8):569–81. doi: 10.1038/Nmat3064.CrossRefGoogle Scholar
  41. 41.
    Yoon D, Son YW, Cheong H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011;11(8):3227–31. doi: 10.1021/Nl201488g.CrossRefGoogle Scholar
  42. 42.
    Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari AC, Geim AK, et al. Subjecting a graphene monolayer to tension and compression. Small. 2009;5(21):2397–402. doi: 10.1002/smll.200900802.CrossRefGoogle Scholar
  43. 43.
    Cho J, Inam F, Reece MJ, Chlup Z, Dlouhy I, Shaffer MSP, et al. Carbon nanotubes: do they toughen brittle matrices? J Mater Sci. 2011;46(14):4770–9. doi: 10.1007/s10853-011-5387-x.CrossRefGoogle Scholar
  44. 44.
    Peitl O, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res. 1996;30(4):509–14.CrossRefGoogle Scholar
  45. 45.
    Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Harshit Porwal
    • 1
    • 2
  • Salvatore Grasso
    • 1
    • 2
  • Luis Cordero-Arias
    • 3
  • Chunchun Li
    • 4
  • Aldo R. Boccaccini
    • 3
  • Mike J. Reece
    • 1
    • 2
    Email author
  1. 1.School of Engineering and Material ScienceQueen Mary University of LondonLondonUK
  2. 2.Nanoforce Technology LimitedLondonUK
  3. 3.Institute of Biomaterials, Department of Materials Science and EngineeringUniversity of Erlangen-NurembergErlangenGermany
  4. 4.Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Centre for Dielectric ResearchXi’an Jiaotong UniversityXi’anChina

Personalised recommendations