Skip to main content

Advertisement

Log in

Effects of the polymeric niche on neural stem cell characteristics during primary culturing

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The polymeric niche encountered by cells during primary culturing can affect cell fate. However, most cell types are primarily propagated on polystyrene (PS). A cell type specific screening for optimal primary culture polymers particularly for regenerative approaches seems inevitable. The effect of physical and chemical properties of treated (corona, oxygen/nitrogen plasma) and untreated cyclic olefin polymer (COP), polymethymethacrylate (PMMA), PP, PLA, PS, PC on neuronal stem cell characteristics was analyzed. Our comprehensive approach revealed plasma treated COP and PMMA as optimal polymers for primary neuronal stem cell culturing and propagation. An increase in the number of NT2/D1 cells with pronounced adhesion, metabolic activities and augmented expression of neural precursor markers was associated to the plasma treatment of surfaces of COP and PMMA with nitrogen or oxygen, respectively. A shift towards large cell sizes at stable surface area/volume ratios that might promote the observed increase in metabolic activities and distinct modulations in F-actin arrangements seem to be primarily mediated by the plasma treatment of surfaces. These results indicate that the polymeric niche has a distinct impact on various cell characteristics. The selection of distinct polymers and the controlled design of an optimized polymer microenvironment might thereby be an effective tool to promote essential cell characteristics for subsequent approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

COP:

Cyclic olefin polymer

PMMA:

Polymethymethacrylate

PP:

Polypropylene

PLA:

Polylactic acid

PS:

Polystyrene

PC:

Polycarbonate

Polymeric niche:

Chemical and physical polymer surface characteristics encountered by cultured cells

References

  1. Meredith JC, Sormana JL, Keselowsky BG, Garcia AJ, Tona A, et al. Combinatorial characterization of cell interactions with polymer surfaces. J Biomed Mater Res A. 2003;66:483–90.

    Article  Google Scholar 

  2. del Valle LJ, Estrany F, Armelin E, Oliver R, Aleman C. Cellular adhesion, proliferation and viability on conducting polymer substrates. Macromol Biosci. 2008;8:1144–51.

    Article  Google Scholar 

  3. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24:1121–31.

    Article  Google Scholar 

  4. Higham M, Short R, Szabo M, Dawson R, MacNeil S. A plasma polymer surface for the co-culture of human dermal fibroblasts and human epidermal keratinocytes for wound healing. Eur Cells Mater. 2002;4:36–7.

    Google Scholar 

  5. Recknor JB, Sakaguchi DS, Mallapragada SK. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials. 2006;27:4098–108.

    Article  Google Scholar 

  6. Amstein CF, Hartman PA. Adaptation of plastic surfaces for tissue culture by glow discharge. J Clin Microbiol. 1975;2:46–54.

    Google Scholar 

  7. Curtis ASG, Forrester JV, McInnes C, Lawrie F. Adhesion of cells to polystyrene surfaces. J Cell Biol. 1983;97:1500–6.

    Article  Google Scholar 

  8. Bacakova L, Mares V, Lisa V, Svorcik V. Molecular mechanisms of improved adhesion and growth of an endothelial cell line cultured on polystyrene implanted with fluorine ions. Biomaterials. 2000;21:1173–9.

    Article  Google Scholar 

  9. Yang J, Mei Y, Hook AL, Taylor M, Urquhart AJ, Bogatyrev SR, et al. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays. Biomaterials. 2010;31:8827–38.

    Article  Google Scholar 

  10. Kaibara M, Iwata H, Wada H, Kawamoto Y, Iwaki M, Suzuki Y. Promotion and control of selective adhesion and proliferation of endothelial cells on polymer surface by carbon deposition. J Biomed Mater Res. 1996;31:429–35.

    Article  Google Scholar 

  11. Bacakova L, Svorcik V, Rybka V, Micek I, Hnatowicz V, Lisa V, et al. Adhesion and proliferation of cultured human aortic smooth muscle cells on polystyrene implanted with N+, F+ and Ar+ ions: correlation with polymer surface polarity and carbonization. Biomaterials. 1996;17:1121–6.

    Article  Google Scholar 

  12. Zhang N, Kohn DH. Using polymeric materials to control stem cell behavior for tissue regeneration. Birth Defects Res C. 2012;96:63–81.

    Article  Google Scholar 

  13. Luong LN, Hong SI, Patel RJ, Outslay ME, Kohn DH. Spatial control of protein within biomimetically nucleated mineral. Biomaterials. 2006;27:1175–86.

    Article  Google Scholar 

  14. Zhang K, Wang H, Huang C, Su Y, Mo X, Ikada Y. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. J Biomed Mater Res A. 2010;93:984–93.

    Google Scholar 

  15. Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials. 2010;31:9135–44.

    Article  Google Scholar 

  16. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechol. 2010;28:581–3.

    Article  Google Scholar 

  17. Irwin EF, Gupta R, Dashti DC, Healy KE. Engineered polymer–media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials. 2011;32:6912–9.

    Article  Google Scholar 

  18. Croitoru-Lamoury J, Williams KR, Lamoury FM, Veas LA, Ajami B, Taylor RM, et al. Neural transplantation of human MSC and NT2 cells in the twitcher mouse model. Cryotherapy. 2006;8:445–58.

    Article  Google Scholar 

  19. Zhao Y, Wang S. Human NT2 neural precursor-derived tumor-infiltrating cells as delivery vehicles for treatment of glioblastoma. Hum Gene Ther. 2010;21:683–94.

    Article  Google Scholar 

  20. Podrygajlo G, Wiegreffe C, Scaal M, Bicker G. Integration of human model neurons (NT2) into embryonic chick nervous system. Dev Dyn. 2010;239:496–504.

    Article  Google Scholar 

  21. Marchal-Victorion S, Deleyrolle L, De Weille J, Saunier M, Dromard C, Sandillon F, et al. The human NTERA2 neural cell line generates neurons on growth under neural stem cell conditions and exhibits characteristics of radial glial cells. Mol Cell Neurosci. 2003;24:198–213.

    Article  Google Scholar 

  22. Pleasure SJ, Lee VM. NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J Neurosci Res. 1993;35:585–602.

    Article  Google Scholar 

  23. Kendall MG, Stuart A. The Advanced Theory of Statistics, vol 2, inference and relationship. New York: Hafner Publishing Company Inc.; 1973.

    Google Scholar 

  24. Rahman NA. A Course in theoretical statistics. New York: Hafner Publishing Co.; 1968.

    Google Scholar 

  25. Rodgers JL, Nicewander WA. Thirteen ways to look at the correlation coefficient. Am Stat. 1988;42:59–66.

    Article  Google Scholar 

  26. Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B. 2007;60:137–57.

    Article  Google Scholar 

  27. Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310:1135–8.

    Article  Google Scholar 

  28. Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci. 1998;74:69–117.

    Article  Google Scholar 

  29. Horbett TA, Schway MB, Ratner BD. Hydrophilic-hydrophobic copolymers as cell substrates-effect on 3T3 cell-growth rates. J Colloid Interface Sci. 1985;104:28–39.

    Article  Google Scholar 

  30. Vanwachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, Vanaken WG. Interaction of cultured human-endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6:403–8.

    Article  Google Scholar 

  31. Vanwachem PB, Hogt AH, Beugeling T, Feijen J, Bantjes A, Detmers JP, et al. Adhesion of cultured human-endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials. 1987;8:323–8.

    Article  Google Scholar 

  32. Lee JH, Khang G, Lee JW, Lee HB. Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci. 1998;205:323–30.

    Article  Google Scholar 

  33. Dudek MM, Gandhirama RP, Volcke C, Cafolla AA, Daniels S, Killard AJ. Plasma surface modification of cyclo-olefin polymers and its application to lateral flow bioassays. Langmuir. 2009;25:11155–61.

    Article  Google Scholar 

  34. Osswald TA, Turng L-S, Gramann PJ. Injection molding handbook. Munich: Hanser Verlag; 2008.

    Google Scholar 

  35. Domininghaus H. Plastics for engineers: materials, properties, applications. Cincinnati: Hanser Gardner; 2000.

    Google Scholar 

  36. Lambert BJ, Tang F-W, Rogers WJ. Polymers in medical applications. Rapra Review Reports; 2001.

  37. Davis JR. Handbook of materials for medical devices. Materials Park: ASM International; 2003.

    Google Scholar 

  38. Langlois A, Duval D. Differentiation of the human NT2 cells into neurons and glia. Methods in Cell Sci. 1997;19:213–9.

    Article  Google Scholar 

  39. Pascual M, Balart R, Sanchez L, Fenollar O, Calvo O. Study of the aging process of corona discharge plasma effects on low density polyethylene film surface. J Mater Sci. 2008;43:4901–9.

    Article  Google Scholar 

  40. Jacobs T, Declercq H, De Geyter N, Cornelissen R, Dubruel P, Leys C, et al. Plasma surface modification of polylactic acid to promote interaction with fibroblasts. J Mater Sci Mater Med. 2013;24(2):469–78.

    Article  Google Scholar 

  41. Wang W, Ma N, Kratz K, Xu X, Li Z, Roch T, et al. The influence of polymer scaffolds on cellular behaviour of bone marrow derived human mesenchymal stem cells. Clin Hemorheol Microcirc. 2012;52:357–73.

    Google Scholar 

  42. Horbett TA, Waldburger JJ, Ratner BD, Hoffman AS. Cell adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc apparatus. J Biomed Mater Res. 1988;22:383–404.

    Article  Google Scholar 

  43. Deguchi S, Sato M. Biomechanical properties of actin stress fibers of non-motile cells. Biorheology. 2009;46:93–105.

    Google Scholar 

  44. Hirata H, Tatsumi H, Sokabe M. Dynamics of actin filaments during tension-dependent formation of actin bundles. Biochim Biophys Acta. 2007;1770:1115–27.

    Article  Google Scholar 

  45. Korn ED, Carlier MF, Pantaloni D. Actin polymerization and ATP hydrolysis. Science. 1987;238:638–44.

    Article  Google Scholar 

  46. Theriot JA. The polymerization motor. Traffic. 2000;1:19–28.

    Article  Google Scholar 

  47. Drakulic D, Krstic A, Stevanovic M. Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones. Genet Mol Res. 2012;11:1385–400.

    Article  Google Scholar 

  48. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 2008;22:152–65.

    Article  Google Scholar 

  49. Tsutsui Y, Nogami T, Sano M, Kashiwai A, Kato K. Induction of S-100b (beta beta) protein in human teratocarcinoma cells. Cell Differ. 1987;21:137–45.

    Article  Google Scholar 

  50. Bacakova L, Filova E, Parizek M, Ruml R, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29:739–67.

    Article  Google Scholar 

  51. Vagaska B, Bacakova L, Filova E, Balik K. Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiol Res. 2010;59:309–22.

    Google Scholar 

  52. Saranya N, Saravanan S, Morrthi A, Ramyakrishna B, Selvamurugan N. Enhanced osteoblast adhesion on polymeric nano-scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2011;7:238–44.

    Article  Google Scholar 

  53. Dowling DP, Miller IS, Ardhaoui M, Gallagher WM. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl. 2011;26:327–47.

    Article  Google Scholar 

  54. Harris CA, Resau JH, Hudson EA, West RA, Moon C, Black AD, et al. Effects on surface wettability, flow, and protein concentration on macrophage and astrocyte adhesion in an in vitro model of central nervous system catheter obstruction. J Biomed Mater Res A. 2011;97:433–40.

    Article  Google Scholar 

  55. Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 2010;6:2711–20.

    Article  Google Scholar 

  56. Tunma S, Inthanon K, Chaiwong C, Pumchusak J, Wongkam W, Boonyawan D. Improving the attachment and proliferation of umbilical cord mesenchymal stem cells on modified polystyrene by nitrogen-containing plasma. Cytotechnology. 2012;65(1):119–34.

    Article  Google Scholar 

  57. de Luca AC, Terenghi G, Downes S. Chemical surface modification of poly-e-caprolactone improves Schwann cell proliferation for peripheral nerve repair. J Tissue Eng Regen Med. 2012;. doi:10.1002/term.1509.

    Google Scholar 

  58. Kim SH, Ha HJ, Ko YK, Yoon SJ, Rhee JM, Kim MS, et al. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. J Biomater Sci Polym Ed. 2007;18:609–22.

    Article  Google Scholar 

  59. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  Google Scholar 

  60. Hodes RJ. Telomere length, aging, and somatic cell turnover. J Exp Med. 1999;190:153–6.

    Article  Google Scholar 

  61. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA. 1992;89:10114–8.

    Article  Google Scholar 

  62. Connolly JA, Kalnins VI, Barber BH. Microtubules and microfilaments during cell spreading and colony formation in PK 15 epithelial cells. Proc Natl Acad Sci USA. 1981;78:6922–6.

    Article  Google Scholar 

  63. Wakatsuki T, Wysolmerski RB, Elson EL. Mechanics of cell spreading: role of myosin II. J Cell Sci. 2003;116:1617–25.

    Article  Google Scholar 

  64. Pelton PD, Sherman LS, Rizvi TA, Marchionni MA, Wood P, Friedman RA, et al. Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Oncogene. 1998;17:2195–209.

    Article  Google Scholar 

  65. Niles WD, Coassin PJ. Cyclic olefin polymers: innovative materials for high-density multiwell plates. Assay Drug Dev Technol. 2008;6:577–90.

    Article  Google Scholar 

  66. Bhattacharyya A, Klapperich CM. Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem. 2006;78:788–92.

    Article  Google Scholar 

  67. Bhurke AS, Askeland PA, Drzal LT. Surface modification of polycarbonate by ultraviolet radiation and ozone. J Adhesion. 2007;83:43–66.

    Article  Google Scholar 

  68. Ho MH, Lee JJ, Fan SC, Wang DM, Hou LT, Hsieh HJ, et al. Efficient modification on PLLA by ozone treatment for biomedical applications. Macromol Biosci. 2007;7:467–74.

    Article  Google Scholar 

  69. Suh H, Hwang YS, Lee JE, Han CD, Park JC. Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly l-lactic acid membrane. Biomaterials. 2001;22:219–30.

    Article  Google Scholar 

  70. DiMaio FR. The science of bone cement: a historical review. Orthopedics. 2002;25:1399–407.

    Google Scholar 

  71. Gautam R, Singh RD, Sharma VP, Siddhartha R, Chand P, Kumar R. Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res B. 2012;100:1444–50.

    Article  Google Scholar 

  72. Mattotti M, Alvarez Z, Ortega JA, Planell JA, Engel E, Alcantara S. Inducing functional radial glia-like progenitors from cortical astrocyte cultures using micropatterned PMMA. Biomaterials. 2012;33:1759–70.

    Article  Google Scholar 

  73. Eita M, Wagberg L, Muhammed M. Spin-assisted multilayers of poly(methyl methacrylate) and zinc oxide quantum dots for ultraviolet-blocking applications. ACS Appl Mater Interfaces; 2012.

  74. Mei Y, Hollister-Lock J, Bogatyrev SR, Cho SW, Weir GC, Langer R, et al. A high throughput micro-array system of polymer surfaces for the manipulation of primary pancreatic islet cells. Biomaterials. 2010;31:8989–95.

    Article  Google Scholar 

  75. Sigurdson L, Carney DE, Hou Y, Hall Lr, Hard R, Hicks WJ, et al. A comparative study of primary and immortalized cell adhesion characteristics to modified polymer surfaces: toward the goal of effective re-epithelialization. J Biomed Mater Res. 2002;59:357–65.

    Article  Google Scholar 

  76. Mant A, Tourniaire G, Diaz-Mochon JJ, Elliott TJ, Williams AP, Bradley M. Polymer microarrays: identification of substrates for phagocytosis assays. Biomaterials. 2006;27:5299–306.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Paul Freudenberger for his support and helpful comments. This work was supported by a FFG grant (Project Number 824915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Schäfer.

Additional information

Stefan Haubenwallner and Matthias Katschnig have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Mean values (n = 6) obtained after 2 h to create a standard curve starting with 2 × 103–3.2 × 106 cells for the generation of a linear equation y = mx + b.; n = 4. Supplementary material 1 (PPT 108 kb)

Fig. S2

AFM 3-D surface images of treated and untreated polymers. Supplementary material 2 (PPT 843 kb)

Fig. S3

Time dependent hydrophobic recovery of treated polymers a Time dependent changes in contact angles of corona treated polymers b Time dependent changes in contact angles of plasma treated polymers; n = 12 for each data set. Supplementary material 3 (PPT 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haubenwallner, S., Katschnig, M., Fasching, U. et al. Effects of the polymeric niche on neural stem cell characteristics during primary culturing. J Mater Sci: Mater Med 25, 1339–1355 (2014). https://doi.org/10.1007/s10856-014-5155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5155-y

Keywords

Navigation