Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings

  • Gergely MártonEmail author
  • István Bakos
  • Zoltán Fekete
  • István Ulbert
  • Anita Pongrácz


The durability of high surface area platinum electrodes during acute intracerebral measurements was investigated. Electrode sites with extremely rough surfaces were realized using electrochemical deposition of platinum onto silicon-based microelectrode arrays from a lead-free platinizing solution. The close to 1000-fold increase in effective surface area lowered impedance, its absolute value at 1 kHz became about 7 and 18 % of the original Pt electrodes in vitro and in vivo, respectively. 24-channel probes were subjected to 12 recording sessions, during which they were implanted into the cerebrum of rats. Our results showed that although on the average the effective surface area of the platinized sites decreased, it remained more than two orders of magnitude higher than the average effective surface area of the original, sputtered thin-film platinum electrodes. Sites with electrochemical deposits proved to be superior, e.g. they provided less thermal and 50 Hz noise, even after 12 penetrations into the intact rat brain.


PCBs Electrochemical Impedance Spectroscopy Electrode Impedance Effective Surface Area Microelectrode Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Useful and motivating discussions with Dr. Tamás Pajkossy are greatly acknowledged. We are grateful to Mrs. Károlyné Payer, Mr. András Strasszner, Mr. Róbert Hodován and Mr. András Lőrincz for their support in the clean room. We also wish to thank Mr. Attila Nagy and Mr. István Réti for their help in chip packaging, also to Mr. Péter Kottra and Mr. István Wosinski for their support in the in vivo experiments. Anita Pongrácz is thankful for the Bolyai János Grant of the HAS. This research was supported by the Hungarian Science Foundation (OTKA K81354), the French-Hungarian ANR-TÉT Neurogen, ANR-TÉT Multisca, TAMOP-4.2.1.B-11/2/KMR-2011-0002 and EU FP7 600925 Neuroseeker grants to István Ulbert.


  1. 1.
    Wise KD, Angell JB, Starr A. An integrated-circuit approach to extracellular microelectrodes, biomedical engineering. IEEE Transactions on BME. 1970;17:238–47.CrossRefGoogle Scholar
  2. 2.
    Najafi K, Wise K. Implantable multielectrode array with on-chip signal processing, solid-state circuits conference digest of technical papers. IEEE International. 1986;1986:98–9.Google Scholar
  3. 3.
    Neves H. Advances in cerebral probing using modular multifunctional probe arrays. Med Device Technol. 2007;18:38–9.Google Scholar
  4. 4.
    Rousche PJ, Pellinen DS, Pivin DP, Williams JC Jr, Vetter RJ, kirke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability, biomedical engineering. IEEE Transactions on BME. 2001;48:361–71.CrossRefGoogle Scholar
  5. 5.
    Chen YY, Lai HY, Lin SH, Cho CW, Chao WH, Liao CH, et al. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. J Neurosci Methods. 2009;182:6–16.CrossRefGoogle Scholar
  6. 6.
    Altuna A, Menendez de la Prida L, Bellistri E, Gabriel G, Guimera A, Berganzo J, et al. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron. 2012;37:1–5.CrossRefGoogle Scholar
  7. 7.
    Heim M, Yvert B, Kuhn A. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation. J Physiol Paris. 2012;106:137–45.CrossRefGoogle Scholar
  8. 8.
    Ferguson JE, Boldt C, Redish AD. Creating low-impedance tetrodes by electroplating with additives. Sens Actuators, A. 2009;156:388–93.CrossRefGoogle Scholar
  9. 9.
    Liu X, Demosthenous A, Donaldson N. Platinum electrode noise in the ENG spectrum. Med Biol Eng Comput. 2008;46:997–1003.CrossRefGoogle Scholar
  10. 10.
    Du J, Blanche TJ, Harrison RR, Lester HA, Masmanidis SC. Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS One. 2011;6:12.Google Scholar
  11. 11.
    Scott KM, Du J, Lester HA, Masmanidis SC. Variability of acute extracellular action potential measurements with multisite silicon probes. J Neurosci Methods. 2012;211:22–30.CrossRefGoogle Scholar
  12. 12.
    Mailley S, Hyland M, Mailley P, McLaughlin JA, McAdams ET. Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters. Bioelectrochemistry. 2004;63:359–64.CrossRefGoogle Scholar
  13. 13.
    Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171–98.CrossRefGoogle Scholar
  14. 14.
    Moffitt MA, McIntyre CC. Model-based analysis of cortical recording with silicon microelectrodes. Clin Neurophysiol. 2005;116:2240–50.CrossRefGoogle Scholar
  15. 15.
    Lempka SF, Johnson MD, Moffitt MA, Otto KJ, Kipke DR, McIntyre CC. Theoretical analysis of intracortical microelectrode recordings. J Neural Eng. 2011;8:1741–2560.CrossRefGoogle Scholar
  16. 16.
    Robinson DA. The electrical properties of metal microelectrodes. Proc IEEE. 1968;56:1065–71.CrossRefGoogle Scholar
  17. 17.
    Baranauskas G, Maggiolini E, Castagnola E, Ansaldo A, Mazzoni A, Angotzi GN, et al. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio. J Neural Eng. 2011;8:1741–2560.CrossRefGoogle Scholar
  18. 18.
    Minnikanti S, Pereira MG, Jaraiedi S, Jackson K, Costa-Neto CM, Li Q, et al. In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus. J Neural Eng. 2010;7:1741–2560.CrossRefGoogle Scholar
  19. 19.
    Green RA, Williams CM, Lovell NH, Poole-Warren LA. Novel neural interface for implant electrodes: improving electroactivity of polypyrrole through MWNT incorporation. J Mater Sci Mater Med. 2008;19:1625–9.CrossRefGoogle Scholar
  20. 20.
    Green RA, Lovell NH, Wallace GG, Poole-Warren LA. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials. 2008;29:3393–9.CrossRefGoogle Scholar
  21. 21.
    Deng M, Yang X, Silke M, Qiu W, Xu M, Borghs G, et al. Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sens Actuators B. 2011;158:176–84.CrossRefGoogle Scholar
  22. 22.
    Lu Y, Li T, Zhao X, Li M, Cao Y, Yang H, et al. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Biomaterials. 2010;31:5169–81.CrossRefGoogle Scholar
  23. 23.
    Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. 2009;6:1741–2560.CrossRefGoogle Scholar
  24. 24.
    Prasad A, Sanchez JC. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J Neural Eng. 2012;9:026028.CrossRefGoogle Scholar
  25. 25.
    Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods. 2005;148:1–18.CrossRefGoogle Scholar
  26. 26.
    Mallet N, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P, et al. Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci. 2008;28:4795–806.CrossRefGoogle Scholar
  27. 27.
    Hackett TA, Barkat TR, O’Brien BM, Hensch TK, Polley DB. Linking topography to tonotopy in the mouse auditory thalamocortical circuit. J Neurosci. 2011;31:2983–95.CrossRefGoogle Scholar
  28. 28.
    Galinanes GL, Taravini IR, Murer MG. Dopamine-dependent periadolescent maturation of corticostriatal functional connectivity in mouse. J Neurosci. 2009;29:2496–509.CrossRefGoogle Scholar
  29. 29.
    Desai SA, Rolston JD, Guo L, Potter SM. Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. Front Neuroeng. 2010;3:00005.Google Scholar
  30. 30.
    Dymond AM, Kaechele LE, Jurist JM, Crandall PH. Brain tissue reaction to some chronically implanted metals. J Neurosurg. 1970;33:574–80.CrossRefGoogle Scholar
  31. 31.
    Marrese CA. Preparation of strongly adherent platinum black coatings. Anal Chem. 1987;59:217–8.CrossRefGoogle Scholar
  32. 32.
    Kloke A, von Stetten F, Zengerle R, Kerzenmacher S. Strategies for the fabrication of porous platinum electrodes. Adv Mater. 2011;23:4976–5008.CrossRefGoogle Scholar
  33. 33.
    Noh J, Park S, Boo H, Kim HC, Chung TD. Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip. Lab Chip. 2011;11:664–71.CrossRefGoogle Scholar
  34. 34.
    Yuan JH, Wang K, Xia XH. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Funct Mater. 2005;15:803–9.CrossRefGoogle Scholar
  35. 35.
    Grand L, Pongrácz A, Vázsonyi É, Márton G, Gubán D, Fiáth R, et al. A novel multisite silicon probe for high quality laminar neural recordings. Sens Actuators A. 2011;166:14–21.CrossRefGoogle Scholar
  36. 36.
    G. Marton, Z. Fekete, I. Bakos, G. Battistig, A. Pongracz, P. Baracskay, et al., Deep-brain silicon multielectrodes with surface-modified Pt recording sites, Sensors, 2012. IEEE 2012;1–4.Google Scholar
  37. 37.
    Woods R. Chemisorption at electrodes: hydrogen and oxygen on noble metals and their alloys. In: Bard AJ, editor. Electroanalytical chemistry: a series of advances. New York: Dekker; 1976.Google Scholar
  38. 38.
    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. San Diego: Academic Press; 2009.Google Scholar
  39. 39.
    Normann RA. Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nat Clin Pract Neurol. 2007;3:444–52.CrossRefGoogle Scholar
  40. 40.
    Wise KD. Silicon microsystems for neuroscience and neural prostheses. IEEE Eng Med Biol Mag. 2005;24:22–9.CrossRefGoogle Scholar
  41. 41.
    Seidl K, Herwik S, Torfs T, Neves HP, Paul O, Ruther P. CMOS-based high-density silicon microprobe arrays for electronic depth control in intracortical neural recording. Microelectromech Sys. 2011;20:1439–48.CrossRefGoogle Scholar
  42. 42.
    Jackson N, Muthuswamy J. Artificial dural sealant that allows multiple penetrations of implantable brain probes. J Neurosci Methods. 2008;171:147–52.CrossRefGoogle Scholar
  43. 43.
    Cheung KC, Renaud P, Tanila H, Djupsund K. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron. 2007;22:1783–90.CrossRefGoogle Scholar
  44. 44.
    Simeral JD, Kim S-P, Black MJ, Donoghue JP, Hochberg LR. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng. 2011;8:025027.CrossRefGoogle Scholar
  45. 45.
    Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng. 2005;52:1295–302.CrossRefGoogle Scholar
  46. 46.
    Abidian MR, Martin DC. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials. 2008;29:1273–83.CrossRefGoogle Scholar
  47. 47.
    Nicholson C, Phillips JM. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol. 1981;321:225–57.Google Scholar
  48. 48.
    J.A. Latikka, J.A. Hyttinen, T.A. Kuurne, H.J. Eskola, J.A. Malmivuo, The conductivity of brain tissues: comparison of results in vivo and in vitro measurements, Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE 2001, vol. 1, pp. 910–2.Google Scholar
  49. 49.
    Fontanini A, Spano P, Bower JM. Ketamine-xylazine-induced slow (<1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci. 2003;23:7993–8001.Google Scholar
  50. 50.
    Sullivan D, Csicsvari J, Mizuseki K, Montgomery S, Diba K, Buzsaki G. Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J Neurosci. 2011;31:8605–16.CrossRefGoogle Scholar
  51. 51.
    Buzsáki G, Silva FLd. High frequency oscillations in the intact brain. Prog Neurobiol. 2012;98:241–9.CrossRefGoogle Scholar
  52. 52.
    Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol. 2008;3:434–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gergely Márton
    • 1
    • 2
    Email author
  • István Bakos
    • 3
  • Zoltán Fekete
    • 4
  • István Ulbert
    • 1
    • 5
  • Anita Pongrácz
    • 4
  1. 1.Department of Comparative Psychophysiology, Institute of Cognitive Neuroscience and PsychologyRCNS, HASBudapestHungary
  2. 2.Semmelweis UniversityBudapestHungary
  3. 3.Institute of Materials and Environmental ChemistryRCNS, HASBudapestHungary
  4. 4.Department of Microtechnology, Institute for Technical Physics and Materials ScienceRCNS, HASBudapestHungary
  5. 5.Faculty of Information TechnologyPázmány Péter Catholic UniversityBudapestHungary

Personalised recommendations