Advertisement

Heparinization of a biomimetic bone matrix: integration of heparin during matrix synthesis versus adsorptive post surface modification

  • Ulla König
  • Anja LodeEmail author
  • Petra B. Welzel
  • Yuichiro Ueda
  • Sven Knaack
  • Anja Henß
  • Anke Hauswald
  • Michael Gelinsky
Article

Abstract

This study intended to evaluate a contemporary concept of scaffolding in bone tissue engineering in order to mimic functions of the extracellular matrix. The investigated approach considered the effect of the glycosaminoglycan heparin on structural and biological properties of a synthetic biomimetic bone graft material consisting of mineralized collagen. Two strategies for heparin functionalization were explored in order to receive a three-component bone substitute material. Heparin was either incorporated during matrix synthesis by mixing with collagen prior to simultaneous fibril reassembly and mineralization (in situ) or added to the matrix after fabrication (a posteriori). Both methods resulted in an incorporation of comparable amounts of heparin, though its distribution in the matrix varied as indicated by TOF-SIMS analyses, and a similar modulation of their protein binding properties. Differential scanning calorimetry revealed that the thermal stability and thereby the degree of crosslinking of the heparinized matrices was increased. However, in contrast to the a posteriori modification, the in situ integration of heparin led to considerable changes of morphology and composition of the matrix: a more open network of collagen fibers yielding a more porous surface and a reduced mineral content were observed. Cell culture experiments with human mesenchymal stem cells (hMSC) revealed a strong influence of the mode of heparin functionalization on cellular processes, as demonstrated for proliferation and osteogenic differentiation of hMSC. Our results indicate that not only heparin per se but also the way of its incorporation into a collagenous matrix determines the cell response. In conclusion, the a posteriori modification was beneficial to support adhesion, proliferation and differentiation of hMSC.

Keywords

Heparin Osteogenic Differentiation Matrix Synthesis Heparin Binding Bone Substitute Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the German Research Society (DFG) for financial support. This study was performed as part of the Collaborative Research Centre/Transregio 79 (SFB/TR 79, subproject M4). We thank Prof. Dr. M. Bornhäuser and co-workers (Medical Clinic I, University Hospital Carl Gustav Carus Dresden) for providing the hMSC. We are grateful to Ms. O. Zieschang for excellent technical assistance, Dr. B. Vetter (Institute for Material Science, Technische Universität Dresden) for the accomplishment of the mechanical tests as well as Dr. A. Bernhardt and Ms. B. Hoyer for fruitful discussions.

References

  1. 1.
    Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6:S311–24.CrossRefGoogle Scholar
  2. 2.
    Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009;25:1539–60.Google Scholar
  3. 3.
    Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17:S467–79. doi: 10.1007/s00586-008-0745-3.CrossRefGoogle Scholar
  4. 4.
    Jia X, Kiick KL. Hybrid multicomponent hydrogels for tissue engineering. Macromol Biosci. 2009;9:140–56.CrossRefGoogle Scholar
  5. 5.
    Rosso F, Giordano A, Barbarasi M, Barbarasi A. From cell–ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174–80.CrossRefGoogle Scholar
  6. 6.
    Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.CrossRefGoogle Scholar
  7. 7.
    Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89:338–44.CrossRefGoogle Scholar
  8. 8.
    Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res. 2008;63:492–6.CrossRefGoogle Scholar
  9. 9.
    Wahl D, Czernuszka JT. Collagen–hydroxyapatite composites for hard tissue repair. Eur Cell Mater. 2006;11:43–56.Google Scholar
  10. 10.
    Weiner S, Wagner HD. The material bone: structure–mechanical function relations. Annu Rev Mater Sci. 1998;28:271–98.CrossRefGoogle Scholar
  11. 11.
    Bradt JH, Mertig M, Teresiak A, Pompe W. Biomimetic mineralization of collagen by combined fibril assembly and calciumphosphate formation. Chem Mater. 1999;11:2694–701.CrossRefGoogle Scholar
  12. 12.
    Gelinsky M, Welzel PB, Simon P, Bernhardt A, König U. Porous three dimensional scaffolds made of mineralised collagen: preparation and properties of a biomimetic nanocomposite material for tissue engineering of bone. Chem Eng J. 2008;137:84–96.CrossRefGoogle Scholar
  13. 13.
    Burth R, Gelinsky M, Pompe W. Collagen–hydroxyapatite tapes—a new implant material. Tech Textile. 1999;8:20–1.Google Scholar
  14. 14.
    Hoyer B, Bernhardt A, Heinemann S, Stachel I, Meyer M, Gelinsky M. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules. 2012;13:1059–66. doi: 10.1021/bm201776r.CrossRefGoogle Scholar
  15. 15.
    Gelinsky M, Eckert M, Despang F. Biphasic, but monolithic scaffolds for the therapy of osteochondral defects. Int J Mater Res. 2007;98:749–55.CrossRefGoogle Scholar
  16. 16.
    Bernhardt A, Lode A, Boxberger S, Pompe W, Gelinsky M. Mineralised collagen—an artificial, extracellular bone matrix—improves osteogenic differentiation of bone marrow stromal cells. J Mater Sci Mater Med. 2008;19:269–75.CrossRefGoogle Scholar
  17. 17.
    Bernhardt A, Lode A, Mietrach C, Hempel U, Hanke T, Gelinsky M. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralised collagen. J Biomed Mater Res A. 2008;90A:852–62.CrossRefGoogle Scholar
  18. 18.
    Lode A, Bernhardt A, Gelinsky M. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation. J Tissue Eng Reg Med. 2008;2:400–7.CrossRefGoogle Scholar
  19. 19.
    Domaschke H, Gelinsky M, Burmeister B, Fleig R, Hanke T, Reinstorf A, Pompe W, Rösen-Wolff A. In vitro ossification and remodeling of mineralized collagen I scaffolds. Tissue Eng. 2006;12:949–58.CrossRefGoogle Scholar
  20. 20.
    Sasisekharan R, Venkataraman G. Heparin and heparan sulfate: biosynthesis, structure and function. Curr Opin Chem Biol. 2000;4:626–31.CrossRefGoogle Scholar
  21. 21.
    Capila I, Linhardt RJ. Heparin–protein interactions. Angew Chem Int Ed Engl. 2002;41:319–412.CrossRefGoogle Scholar
  22. 22.
    Salbach J, Rachner TD, Rauner M, Hempel U, Anderegg U, Franz S, Simon JCh, Hofbauer LC. Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med. 2012;90:625–35.CrossRefGoogle Scholar
  23. 23.
    Kjellen L, Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–75.CrossRefGoogle Scholar
  24. 24.
    Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions of cell surface heparin sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77.CrossRefGoogle Scholar
  25. 25.
    Spinella FJ, Kiick KL, Fursta EM. The role of heparin self-association in the gelation of heparin functionalized polymers. Biomaterials. 2008;29:1299–306.CrossRefGoogle Scholar
  26. 26.
    Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8:457–70.CrossRefGoogle Scholar
  27. 27.
    Lode A, Reinstorf A, Bernhardt A, Wolf-Brandstetter C, König U, Gelinsky M. Heparin modification of calcium phosphate bone cements for VEGF functionalization. J Biomed Mater Res A. 2008;86A:749–59.CrossRefGoogle Scholar
  28. 28.
    Benoit DSW, Anseth KS. Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater. 2005;1:461–70.CrossRefGoogle Scholar
  29. 29.
    Müller G, Hanschke M. Quantitative and qualitative analyses of proteoglycans in cartilage extracts by precipitation with 1,9-dimethylmethylene blue. Connect Tissue Res. 1996;33:243–8.CrossRefGoogle Scholar
  30. 30.
    Vickerman J, Gilmore IS. Surface analysis-principal techniques. New York: Wiley; 2009.CrossRefGoogle Scholar
  31. 31.
    Friess W, Lee G. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials. 1996;17:2289–94.CrossRefGoogle Scholar
  32. 32.
    Na GC. Monomer and oligomer of type I collagen: molecular properties and fibril assembly. Biochemistry. 1989;28:7161–7.CrossRefGoogle Scholar
  33. 33.
    Tiktopulo EI, Kajava AV. Denaturation of type I collagen fibrils is an endothermic process accompanied by a noticeable change in the partial heat capacity. Biochemistry. 1998;37:8147–52.CrossRefGoogle Scholar
  34. 34.
    Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76:3243–52.CrossRefGoogle Scholar
  35. 35.
    Kronick PL, Cooke P. Thermal stabilization of collagen fibers by calcification. Connect Tissue Res. 1996;33:275–82.CrossRefGoogle Scholar
  36. 36.
    Trebacz H, Wójtowicz K. Thermal stabilization of collagen molecules in bone tissue. Int J Biol Macromol. 2005;37:257–62.CrossRefGoogle Scholar
  37. 37.
    Mathews MB. The interaction of collagen and acid mucopolysaccharides. A model for connective tissue. Biochem J. 1965;96:710–6.Google Scholar
  38. 38.
    Öbrink B. A study of the interactions between monomeric tropocollagen and glycosaminoglycans. Eur J Biochem. 1973;33:387–400.CrossRefGoogle Scholar
  39. 39.
    Stamov DR, Khoa Nguyen TA, Evans HM, Pfohl T, Werner C, Pompe T. The impact of heparin intercalation at specific binding sites in telopeptide-free collagen type I fibrils. Biomaterials. 2011;32:7444–5.CrossRefGoogle Scholar
  40. 40.
    Angele P, Kunjat R, Faltermeier H, Schuhmann D, Nerlich M, Kinner B, Englert C, Ruszczak Z, Mehrl R, Müller R. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials. 2004;25:2831–41.CrossRefGoogle Scholar
  41. 41.
    Duan X, Sheardown H. Crosslinking of collagen with dendrimers. J Biomed Mater Res. 2005;75A:510–8.CrossRefGoogle Scholar
  42. 42.
    Teixeira S, Yang L, Dijkstra PJ, Ferraz MP, Monteiro FJ. Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering. J Mater Sci Mater Med. 2010;21:2385–92.CrossRefGoogle Scholar
  43. 43.
    McPherson JM, Sawamura SJ, Condell RA, Rhee W, Wallace DG. The effects of heparin on the physicochemical properties of reconstituted collagen. Coll Relat Res. 1988;8:65–82.CrossRefGoogle Scholar
  44. 44.
    Murugesan S, Xie J, Linhardt RJ. Immobilization of heparin: approaches and applications. Curr Top Med Chem. 2008;8:80–100.CrossRefGoogle Scholar
  45. 45.
    Landis WJ, Silver FH. mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cell Tissues Organs. 2009;189:20–4.CrossRefGoogle Scholar
  46. 46.
    Silver FH, Landis WJ. Deposition of apatite in mineralizing vertebrate extracellular matrices: a model of possible nucleation sites on type I collagen. Connect Tissue Res. 2011;52:242–54.CrossRefGoogle Scholar
  47. 47.
    Rees SG, Shellis RP, Embery G. Inhibition of hydroxyapatite crystal growth by bone proteoglycans and proteoglycan components. Biochem Biophys Res Commun. 2002;292:727–33.CrossRefGoogle Scholar
  48. 48.
    Rees SG, Hughes W, Embery G. Interaction of glucuronic acid and iduronic acid-rich glycosaminoglycans and their modified forms with hydroxyapatite. Biomaterials. 2002;23:481–9.CrossRefGoogle Scholar
  49. 49.
    Embery G, Rölla G, Stanbury JB. Interaction of acid glycosaminoglycans (mucopolysaccharides) with hydroxyapatite. Scand J Dent Res. 1979;87:318–24.Google Scholar
  50. 50.
    Hughes Wassell DT, Embery G. Adsorption of chondroitin-4-sulphate and heparin onto hydroxyapatite—effect of bovine serum albumin. Biomaterials. 1997;18:1001–7.CrossRefGoogle Scholar
  51. 51.
    Seto SP, Casas ME, Temenoff JS. Differentiation of mesenchymal stem cells in heparin-containing hydrogels via coculture with osteoblasts. Cell Tissue Res. 2012;347:589–601.CrossRefGoogle Scholar
  52. 52.
    Viswanadham RK, Kramer EJ. Elastic properties of reconstituted collagen hollow fibre membranes. J Mater Sci. 1976;11:1254–62.CrossRefGoogle Scholar
  53. 53.
    Wenger MP, Bozec L, Horton MA, Mesquida P. Mechanical properties of collagen fibrils. Biophys J. 2007;93:1255–63.CrossRefGoogle Scholar
  54. 54.
    Grant CA, Brockwell DJ, Radford SE, Thomson NH. Tuning the elastic modulus of hydrated collagen fibrils. Biophys J. 2009;97:2985–92.CrossRefGoogle Scholar
  55. 55.
    Xu B, Chow MJ, Zhang Y. Experimental and modeling study of collagen scaffolds with the effects of crosslinking and fiber alignment. Int J Biomater. 2011;2011:172389.CrossRefGoogle Scholar
  56. 56.
    Lopez-Garcia MD, Beebe DJ, Crone WC. Young’s modulus of collagen at slow displacement rates. Biomed Mater Eng. 2010;20:361–9.Google Scholar
  57. 57.
    Hadjipanayi E. Engineering physical structure in biomimetic collagen scaffolds: strategies for regulating cell behavior. Doctoral thesis, University College London; 2010.Google Scholar
  58. 58.
    Uygun BE, Stojsih SE, Matthew HWT. Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng Part A. 2009;15:3499–512.CrossRefGoogle Scholar
  59. 59.
    Mathews S, Mathew SA, Gupta PK, Bhonde R, Totey S. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells. J Tissue Eng Regen Med. 2012;. doi: 10.1002/term.1507.Google Scholar
  60. 60.
    Liu ZM, Gu Q, Xu ZK, Groth T. Synergistic effect of polyelectrolyte multilayers and osteogenic growth medium on differentiation of human mesenchymal stem cells. Macromol Biosci. 2010;10:1043–54.CrossRefGoogle Scholar
  61. 61.
    Benoit DSW, Durney AR, Anseth KS. The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials. 2007;28:66–77.CrossRefGoogle Scholar
  62. 62.
    Almodovar J, Bacon S, Gogolski J, Kisiday JD, Kipper MJ. Polysaccharide-based polyelectrolyte multilayer surface coatings can enhance mesenchymal stem cell response to adsorbed growth factors. Biomacromolecules. 2010;11:2629–39.CrossRefGoogle Scholar
  63. 63.
    Bramono DS, Murali S, Rai B, Ling L, Poh WT, Lim ZX, et al. Bone marrow-derived heparan sulfate potentiates the osteogenic activity of bone morphogenetic protein-2 (BMP-2). Bone. 2012;50:954–64.CrossRefGoogle Scholar
  64. 64.
    Ling L, Dombrowski C, Foong KM, Haupt LM, Stein GS, Nurcombe V, et al. Synergism between Wnt3a and heparin enhances osteogenesis via a phosphoinositide 3-kinase/Akt/RUNX2 pathway. J Biol Chem. 2010;285:26233–44.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ulla König
    • 1
    • 3
  • Anja Lode
    • 1
    • 2
    Email author
  • Petra B. Welzel
    • 3
  • Yuichiro Ueda
    • 1
  • Sven Knaack
    • 1
    • 2
  • Anja Henß
    • 4
  • Anke Hauswald
    • 1
  • Michael Gelinsky
    • 1
    • 2
  1. 1.Max Bergmann Center of Biomaterials Dresden, Institute for Materials ScienceTechnische Universität DresdenDresdenGermany
  2. 2.Centre for Translational Bone, Joint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Medical Faculty of Technische Universität DresdenDresdenGermany
  3. 3.Leibniz Institute of Polymer Research Dresden e. V.DresdenGermany
  4. 4.Institute of Physical ChemistryJustus Liebig University GießenGiessenGermany

Personalised recommendations