Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone

  • Jasmin Waser-Althaus
  • Achim Salamon
  • Marcus Waser
  • Celestino Padeste
  • Michael Kreutzer
  • Uwe Pieles
  • Bert Müller
  • Kirsten Peters
Article

Abstract

Polyetheretherketone (PEEK) generally exhibits physical and chemical characteristics that prevent osseointegration. To activate the PEEK surface, we applied oxygen and ammonia plasma treatments. These treatments resulted in surface modifications, leading to changes in nanostructure, contact angle, electrochemical properties and protein adhesion in a plasma power and process gas dependent way. To evaluate the effect of the plasma-induced PEEK modifications on stem cell adhesion and differentiation, adipose tissue-derived mesenchymal stem cells (adMSC) were seeded on PEEK specimens. We demonstrated an increased adhesion, proliferation, and osteogenic differentiation of adMSC in contact to plasma-treated PEEK. In dependency on the process gas (oxygen or ammonia) and plasma power (between 10 and 200 W for 5 min), varying degrees of osteogenic differentiation were induced. When adMSC were grown on 10 and 50 W oxygen and ammonia plasma-treated PEEK substrates they exhibited a doubled mineralization degree relative to the original PEEK. Thus plasma treatment of PEEK specimens induced changes in surface chemistry and topography and supported osteogenic differentiation of adMSC in vitro. Therefore plasma treated PEEK holds perspective for contributing to osseointegration of dental and orthopedic load-bearing PEEK implants in vivo.

Keywords

Contact Angle Plasma Treatment Oxygen Plasma Plasma Power Oxygen Plasma Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by the Swiss Nanoscience Institute (project 6.2), the Rector’s Conference of the Swiss Universities (CRUS) and the Federal State of Mecklenburg-Vorpommern, Germany. The authors thank Stefanie Adam (Department of Cell Biology, Rostock University Medical Center, Germany) for her excellent technical assistance and Dr. med. habil. Jürgen Weber (Ästhetikklinik Rostock, Germany) for providing liposuction tissue. Further acknowledgements go to Prof. Dr. Dieter Scharnweber (Technical University Dresden, Germany) and Anja Caspari (Leibnitz Institute for Polymer Research, Dresden, Germany) for support with the zeta-potential measurements and to Dr. Roman Heuberger (RMS Foundation, Bettlach, Switzerland) for the XPS measurements and related data analysis. We thank Victrex for kindly providing us with APTIV™ PEEK sheets.

References

  1. 1.
    Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845–69. doi: 10.1016/j.biomaterials.2007.07.013.CrossRefGoogle Scholar
  2. 2.
    Cook SD, Rust-Dawicki AM. Preliminary evaluation of titanium-coated PEEK dental implants. J Oral Implantol. 1995;21(3):176–81.Google Scholar
  3. 3.
    Skinner HB. Composite technology for total hip-arthroplasty. Clin Orthop Relat Res. 1988;235:224–36.Google Scholar
  4. 4.
    Toth JM, Wang M, Estes BT, Scifert JL, Seim HB 3rd, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27(3):324–34. doi: 10.1016/j.biomaterials.2005.07.011.CrossRefGoogle Scholar
  5. 5.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. San Diego: Academic Press; 1996.Google Scholar
  6. 6.
    Poulsson AHC, Richards GR. Surface modification techniques of polyetheretherketone, including plasma surface treatment. In: Kurtz SM, editor. PEEK biomaterials handbook. 1st ed. Waltham: William Andrew/Elsevier Inc.; 2012. p. 145–61.CrossRefGoogle Scholar
  7. 7.
    Ha SW, Gisep A, Mayer J, Wintermantel E, Gruner H, Wieland M. Topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite coatings on carbon fibre-reinforced poly(etheretherketone). J Mater Sci. 1997;8(12):891–6. doi: 10.1023/A:1018562023599.Google Scholar
  8. 8.
    Noiset O, Schneider YJ, Marchand-Brynaert J. Fibronectin adsorption or and covalent grafting on chemically modified PEEK film surfaces. J Biomater Sci Polym Ed. 1999;10(6):657–77.CrossRefGoogle Scholar
  9. 9.
    Noiset O, Schneider YJ, Marchand-Brynaert J. Adhesion and growth of CaCo2 cells on surface-modified PEEK substrata. J Biomater Sci Polym Ed. 2000;11(7):767–86.CrossRefGoogle Scholar
  10. 10.
    Briem D, Strametz S, Schroder K, Meenen NM, Lehmann W, Linhart W, et al. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci. 2005;16(7):671–7. doi: 10.1007/s10856-005-2539-z.Google Scholar
  11. 11.
    Schroder K, Meyer-Plath A, Keller D, Ohl A. On the applicability of plasma assisted chemical micropatterning to different polymeric biomaterials. Plasmas Polym. 2002;7(2):103–25. doi: 10.1023/A:1016239302194.CrossRefGoogle Scholar
  12. 12.
    Chan CM, Ko TM, Hiraoka H. Polymer surface modification by plasmas and photons. Surf Sci Rep. 1996;24(1–2):3–54.Google Scholar
  13. 13.
    Althaus J, Padeste C, Köser J, Pieles U, Peters K, Müller B. Nanostructuring polyetheretherketone for medical implants. Eur J Nanomed. 2012;4(1):7–15. doi: 10.1515/ejnm-2011-0001.CrossRefGoogle Scholar
  14. 14.
    Vlachopoulou ME, Tserepi A, Beltsios K, Boulousis G, Gogolides E. Nanostructuring of PDMS surfaces: dependence on casting solvents. Microelectron Eng. 2007;84(5–8):1476–9. doi: 10.1016/j.mee.2007.01.169.CrossRefGoogle Scholar
  15. 15.
    Tsougeni K, Vourdas N, Tserepi A, Gogolides E, Cardinaud C. Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir. 2009;25(19):11748–59. doi: 10.1021/La901072z.CrossRefGoogle Scholar
  16. 16.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28. doi: 10.1089/107632701300062859.CrossRefGoogle Scholar
  17. 17.
    Rider DA, Dombrowski C, Sawyer AA, Ng GH, Leong D, Hutmacher DW, et al. Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells. 2008;26(6):1598–608. doi: 10.1634/stemcells.2007-0480.CrossRefGoogle Scholar
  18. 18.
    Levi B, Nelson ER, Li SL, James AW, Hyun JS, Montoro DT, et al. Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects. Stem Cells. 2011;29(8):1241–55. doi: 10.1002/Stem.670.CrossRefGoogle Scholar
  19. 19.
    Peters K, Salamon A, Van Vlierberghe S, Rychly J, Kreutzer M, Neumann HG, et al. A new approach for adipose tissue regeneration based on human mesenchymal stem cells in contact to hydrogels-an in vitro study. Adv Eng Mater. 2009;11(10):B155–61. doi: 10.1002/adem.200800379.CrossRefGoogle Scholar
  20. 20.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. doi: 10.1016/j.cell.2006.06.044.CrossRefGoogle Scholar
  21. 21.
    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003. doi: 10.1038/nmat2013.CrossRefGoogle Scholar
  22. 22.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95. doi: 10.1016/S1534-5807(04)00075-9.CrossRefGoogle Scholar
  23. 23.
    McNamara LE, McMurray RJ, Biggs MJ, Kantawong F, Oreffo RO, Dalby MJ. Nanotopographical control of stem cell differentiation. J Tissue Eng. 2010;2010:120623. doi: 10.4061/2010/120623.CrossRefGoogle Scholar
  24. 24.
    Kolind K, Leong KW, Besenbacher F, Foss M. Guidance of stem cell fate on 2D patterned surfaces. Biomaterials. 2012;33(28):6626–33. doi: 10.1016/j.biomaterials.2012.05.070.CrossRefGoogle Scholar
  25. 25.
    Anselme K, Ponche A, Bigerelle M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H. 2010;224(H12):1487–507. doi: 10.1243/09544119jeim901.CrossRefGoogle Scholar
  26. 26.
    Althaus J, Deyhle H, Bunk O, Kristiansen PM, Müller B. Anisotropy in polyetheretherketone films. J Nanophotonics. 2012;6(63510):1–11. doi: 10.1117/1.JNP.6.063510.Google Scholar
  27. 27.
    d’Agostino R, Favia P, Kawai Y, Ikegami H, Sato N, Arefi-Khonsari F. Advanced plasma technology. Weinheim: Wiley-VCH; 2008.Google Scholar
  28. 28.
    Grundke K, Jacobasch HJ, Simon F, Schneider S. Physicochemical properties of surface-modified polymers. J Adhes Sci Technol. 1995;9(3):327–50. doi: 10.1163/156856195x00536.CrossRefGoogle Scholar
  29. 29.
    Noeske K. Die Bindung von Kristallviolett an Desoxyribonukleinsaure—Cytophotometrische Untersuchungen an normalen und Tumorzellkernen. Histochemie. 1966;7(3):273–87.CrossRefGoogle Scholar
  30. 30.
    Sarkar BC, Chauhan UP. A new method for determining micro quantities of calcium in biological materials. Anal Biochem. 1967;20(1):155–66.CrossRefGoogle Scholar
  31. 31.
    Montalibet J, Skorey KI, Kennedy BP. Protein tyrosine phosphatase: enzymatic assays. Methods. 2005;35(1):2–8. doi: 10.1016/j.ymeth.2004.07.002.CrossRefGoogle Scholar
  32. 32.
    Proudfoot D, Skepper JN, Hegyi L, Bennett MR, Shanahan CM, Weissberg PL. Apoptosis regulates human vascular calcification in vitro—evidence for initiation of vascular calcification by apoptotic bodies. Circ Res. 2000;87(11):1055–62.CrossRefGoogle Scholar
  33. 33.
    Spandl J, White DJ, Peychl J, Thiele C. Live cell multicolor imaging of lipid droplets with a new dye, LD540. Traffic. 2009;10(11):1579–84. doi: 10.1111/j.1600-0854.2009.00980.x.CrossRefGoogle Scholar
  34. 34.
    Althaus J, Urwyler P, Padeste C, Heuberger R, Deyhle H, Schift H, et al. Micro- and nanostructured polymer substrates for biomedical applications. Proc SPIE. 2012;8339:83390Q. doi: 10.1117/12.915235.CrossRefGoogle Scholar
  35. 35.
    Rechendorff K, Hovgaard MB, Foss M, Zhdanov VP, Besenbacher F. Enhancement of protein adsorption induced by surface roughness. Langmuir. 2006;22(26):10885–8. doi: 10.1021/la0621923.CrossRefGoogle Scholar
  36. 36.
    Altankov G, Groth T. Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J Mater Sci. 1994;5(9–10):732–7.Google Scholar
  37. 37.
    Müller B. Natural formation of nanostructures: from fundamentals in metal heteroepitaxy to applications in optics and biomaterials science. Surf Rev Lett. 2001;8(1–2):169–228. doi: 10.1142/S0218625X01000859.Google Scholar
  38. 38.
    Muller B, Riedel M, Michel R, De Paul SM, Hofer R, Heger D, et al. Impact of nanometer-scale roughness on contact-angle hysteresis and globulin adsorption. J Vac Sci Technol B. 2001;19(5):1715–20.CrossRefGoogle Scholar
  39. 39.
    Lee WH, Loo CY, Van KL, Zavgorodniy AV, Rohanizadeh R. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments. J R Soc Interface. 2012;9(70):918–27. doi: 10.1098/rsif 2011.0586.CrossRefGoogle Scholar
  40. 40.
    Safinia L, Datan N, Hohse M, Mantalaris A, Bismarck A. Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials. 2005;26(36):7537–47. doi: 10.1016/j.biomaterials.2005.05.078.CrossRefGoogle Scholar
  41. 41.
    Iyengar DR, Perutz SM, Dai CA, Ober CK, Kramer EJ. Surface segregation studies of fluorine-containing diblock copolymers. Macromolecules. 1996;29(4):1229–34.CrossRefGoogle Scholar
  42. 42.
    Mendonca G, Mendonca DBS, Simoes LGP, Araujo AL, Leite ER, Duarte WR, et al. Nanostructured alumina-coated implant surface: effect on osteoblast-related gene expression and bone-to-implant contact in vivo. Int J Oral Maxillofac Implant. 2009;24(2):205–15.Google Scholar
  43. 43.
    Cooper LF, Zhou YS, Takebe J, Guo JL, Abron A, Holmen A, et al. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials. 2006;27(6):926–36. doi: 10.1016/j.biomaterials.2005.07.009.CrossRefGoogle Scholar
  44. 44.
    Dalby MJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS. Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. Tissue Eng. 2002;8(6):1099–108. doi: 10.1089/107632702320934191.CrossRefGoogle Scholar
  45. 45.
    Spiegelman BM, Ginty CA. Fibronectin modulation of cell-shape and lipogenic gene-expression in 3t3-adipocytes. Cell. 1983;35(3):657–66.CrossRefGoogle Scholar
  46. 46.
    Lazar MA. PPAR gamma, 10 years later. Biochimie. 2005;87(1):9–13. doi: 10.1016/j.biochi.2004.10.021.CrossRefGoogle Scholar
  47. 47.
    Chen L, Necela BM, Su WD, Yanagisawa M, Anastasiadis PZ, Fields AP, et al. Peroxisome proliferator-activated receptor gamma promotes epithelial to mesenchymal transformation by rho GTPase-dependent activation of ERK1/2. J Biol Chem. 2006;281(34):24575–87. doi: 10.1074/jbc.M604147200.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jasmin Waser-Althaus
    • 1
    • 2
    • 3
    • 4
  • Achim Salamon
    • 1
  • Marcus Waser
    • 3
  • Celestino Padeste
    • 4
  • Michael Kreutzer
    • 5
  • Uwe Pieles
    • 3
  • Bert Müller
    • 2
  • Kirsten Peters
    • 1
  1. 1.Department of Cell BiologyRostock University Medical CenterRostockGermany
  2. 2.Biomaterials Science CenterUniversity of BaselBaselSwitzerland
  3. 3.Institute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
  4. 4.Laboratory for Micro- and NanotechnologyPaul Scherrer InstitutVilligen PSISwitzerland
  5. 5.Center for Medical Research (ZEMFO)Rostock University Medical CenterRostockGermany

Personalised recommendations