Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 24, Issue 11, pp 2627–2633 | Cite as

Regeneration of the limb: opinions on the reality

  • Eugene Yong-Shun See
  • Mangesh Kulkarni
  • Abhay PanditEmail author
Article

Abstract

Whenever the topic of re-growing human limbs is posed for discussion, it is often argued that ‘if a newt can do it, then so can we’. This notion, albeit promising, is somewhat like watching a science-fiction film; the individual components are currently available but we are far from realizing the complete picture. Today’s reality is that if we are faced with a limb-severing injury, any regenerative attempt would endeavour to accelerate the pace at which the tissue heals to a clinically relevant/functional state. The science of limb regeneration can be approached from three different angles, developmental biology; regenerative medicine; and tissue engineering. This opinion piece describes how each approach can be used to understand the concepts behind regeneration, how far each approach has advanced and the hurdles faced by each of the approaches.

Keywords

Anterior Cruciate Ligament Tissue Engineering Anterior Cruciate Ligament Reconstruction Donor Site Morbidity Limb Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge Prof. Joachim Kohn for stimulating this discussion. Dr. Uri Frank, Dr. Carolyn Holladay, Mohammad Aburub for helpful suggestions in formulating some of the discussions.

References

  1. 1.
    Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. Biol. 1961;3:318–56.Google Scholar
  2. 2.
    Morgan TH. Sex limited inheritance in drosophila. Science. 1910;32(812):120–2.CrossRefGoogle Scholar
  3. 3.
    Novitski E. Meiotic drive. Science. 1962;137(3533):861–2.CrossRefGoogle Scholar
  4. 4.
    Meyer WK, Arbeithuber B, Ober C, Ebner T, Tiemann-Boege I, Hudson RR, et al. Evaluating the evidence for transmission distortion in human pedigrees. Genetics. 2012;191(1):215–32.CrossRefGoogle Scholar
  5. 5.
    Ingham PW. Pattern formation Hedgehog points the way. Curr Biol. 1994;4(4):347–50.CrossRefGoogle Scholar
  6. 6.
    Shubin N, Tabin C, Carroll S. Fossils, genes and the evolution of animal limbs. Nature. 1997;388(6643):639–48.CrossRefGoogle Scholar
  7. 7.
    Stricker S, Mundlos S. Mechanisms of digit formation: human malformation syndromes tell the story. Dev Dyn. 2011;240(5):990–1004.CrossRefGoogle Scholar
  8. 8.
    Klingenberg CP, Badyaev AV, Sowry SM, Beckwith NJ. Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. Am Nat. 2001;157(1):11–23.CrossRefGoogle Scholar
  9. 9.
    Klingenberg CP, Mebus K, Auffray JC. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evol Dev. 2003;5(5):522–31.CrossRefGoogle Scholar
  10. 10.
    Polanski JM. Morphological integration of the modern human mandible during ontogeny. Int J Evol Biol. 2011;2011:545879.Google Scholar
  11. 11.
    Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. The genomic basis of adaptive evolution in three spine sticklebacks. Nature. 2012;484(7392):55–61.CrossRefGoogle Scholar
  12. 12.
    Saunders J Jr. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool. 1948;108(3):363–403.CrossRefGoogle Scholar
  13. 13.
    Rubin L, Saunders JW. Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Dev Biol. 1972;28(1):94–112.CrossRefGoogle Scholar
  14. 14.
    Niswander L, Tickle C, Vogel A, Booth I, Martin GR. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell. 1993;75(3):579–87.CrossRefGoogle Scholar
  15. 15.
    Fallon JF, López A, Ros MA, Savage MP, Olwin BB, Simandl BK. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science. 1994;264(5155):104–7.CrossRefGoogle Scholar
  16. 16.
    Crossley PH, Martin GR. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development. 1995;121(2):439–51.Google Scholar
  17. 17.
    Vogel A, Rodriguez C, Izpisúa-Belmonte JC. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development. 1996;122(6):1737–50.Google Scholar
  18. 18.
    Casanova JC, Uribe V, Badia-Careaga C, Giovinazzo G, Torres M, Sanz-Ezquerro JJ. Apical ectodermal ridge morphogenesis in limb development is controlled by Arid3b-mediated regulation of cell movements. Development. 2011;138(6):1195–205.CrossRefGoogle Scholar
  19. 19.
    Chevallier A, Kieny M, Mauger A. Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol. 1977;41:245–58.Google Scholar
  20. 20.
    Christ B, Jacob HJ, Jacob M. Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol (Berl). 1977;150(2):171–86.CrossRefGoogle Scholar
  21. 21.
    Johnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell. 1997;90(6):979–90.CrossRefGoogle Scholar
  22. 22.
    Margulies EH, Kardia SL, Innis JW. A comparative molecular analysis of developing mouse forelimbs and hindlimbs using serial analysis of gene expression (SAGE). Genome Res. 2001;11(10):1686–98.CrossRefGoogle Scholar
  23. 23.
    Taher L, Collette NM, Murugesh D, Maxwell E, Ovcharenko I, Loots GG. Global gene expression analysis of murine limb development. PLoS ONE. 2011;6(12):e28358.CrossRefGoogle Scholar
  24. 24.
    Roshan A, Grant I. Lessons for adult fingertip regeneration: glimpses from basic research. J Hand Surg [Am]. 2012;37(6):1287–90.CrossRefGoogle Scholar
  25. 25.
    Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–22.CrossRefGoogle Scholar
  26. 26.
    Illingworth CM. Trapped fingers and amputated finger tips in children. J Pediatr Surg. 1974;9(6):853–8.CrossRefGoogle Scholar
  27. 27.
    Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74(7):2527–34.Google Scholar
  28. 28.
    Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang XM, Leferovich J, et al. Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci USA. 2010;107(13):5845–50.CrossRefGoogle Scholar
  29. 29.
    Billingham RE, Reynolds J. Transplantation studies on sheets of pure epidermal epithelium and on epidermal cell suspensions. Br J Plast Surg. 1952;5(1):25–36.CrossRefGoogle Scholar
  30. 30.
    Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43.CrossRefGoogle Scholar
  31. 31.
    O’Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;1(8211):75–8.CrossRefGoogle Scholar
  32. 32.
    Garcia Y, Wilkins B, Collighan RJ, Griffin M, Pandit A. Towards development of a dermal rudiment for enhanced wound healing response. Biomaterials. 2008;29(7):857–68.CrossRefGoogle Scholar
  33. 33.
    Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G. Bioengineered skin substitutes for the management of burns: a systematic review. Burns. 2007;33(8):946–57.CrossRefGoogle Scholar
  34. 34.
    Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58.CrossRefGoogle Scholar
  35. 35.
    Legnani C, Ventura A, Terzaghi C, Borgo E, Albisetti W. Anterior cruciate ligament reconstruction with synthetic grafts: a review of literature. Int Orthop. 2010;34(4):465–71.CrossRefGoogle Scholar
  36. 36.
    Jones K. Reconstruction of the anterior cruciate ligament: a technique using the central one-third of the patellar ligament. J Bone Joint Surg Am. 1963;45:925–32.Google Scholar
  37. 37.
    Gomez T, Ratzlaff C, McConkey JP, Dean E, Thompson JP. Semitendinosus repair augmentation of acute anterior cruciate ligament rupture. Can J Sport Sci. 1990;15(2):137–42.Google Scholar
  38. 38.
    Davis P, Huang S, Ambrosio L, Ronca D, Nicolais L. A biodegradable conposite artificial tendon. J Mater Sci Mater Med. 1992;3(5):359–64.CrossRefGoogle Scholar
  39. 39.
    Kew SJ, Gwynne JH, Enea D, Abu-Rub M, Pandit A, Zeugolis D, et al. Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomater. 2011;7(9):3237–47.CrossRefGoogle Scholar
  40. 40.
    Yin Z, Chen X, Chen JL, Ouyang HW. Stem cells for tendon tissue engineering and regeneration. Expert Opin Biol Ther. 2010;10(5):689–700.CrossRefGoogle Scholar
  41. 41.
    Klinkert P, Post PN, Breslau PJ, van Bockel JH. Saphenous vein versus PTFE for above-knee femoropopliteal bypass: a review of the literature. Eur J Vasc Endovasc Surg. 2004;27(4):357–62.CrossRefGoogle Scholar
  42. 42.
    Veith FJ, Gupta SK, Ascer E, White-Flores S, Samson RH, Scher LA, et al. Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg. 1986;3(1):104–14.Google Scholar
  43. 43.
    Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397–400.CrossRefGoogle Scholar
  44. 44.
    Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, et al. Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials. 1996;17(2):115–24.CrossRefGoogle Scholar
  45. 45.
    Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288(3):H1451–60.CrossRefGoogle Scholar
  46. 46.
    Ravi S, Qu Z, Chaikof EL. Polymeric materials for tissue engineering of arterial substitutes. Vascular. 2009;17(Suppl 1):S45–54.CrossRefGoogle Scholar
  47. 47.
    Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol. 2011;93(2):204–30.CrossRefGoogle Scholar
  48. 48.
    Battiston B, Geuna S, Ferrero M, Tos P. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005;25(4):258–67.CrossRefGoogle Scholar
  49. 49.
    Yao L, de Ruiter GCW, Wang H, Knight AM, Spinner RJ, Yaszemski MJ, et al. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials. 2010;31(22):5789–97.CrossRefGoogle Scholar
  50. 50.
    Stanec S, Stanec Z. Ulnar nerve reconstruction with an expanded polytetrafluoroethylene conduit. Br J Plast Surg. 1998;51(8):637–9.CrossRefGoogle Scholar
  51. 51.
    Braga-Silva J. The use of silicone tubing in the late repair of the median and ulnar nerves in the forearm. J Hand Surg [Br]. 1999;24(6):703–6.CrossRefGoogle Scholar
  52. 52.
    Inada Y, Hosoi H, Yamashita A, Morimoto S, Tatsumi H, Notazawa S et al. Regeneration of peripheral motor nerve gaps with a polyglycolic acid-collagen tube: technical case report. Neurosurgery. 2007;61(5):E1105–7; discussion E1107.Google Scholar
  53. 53.
    Bertleff MJOE, Meek MF, Nicolai JPA. A prospective clinical evaluation of biodegradable neurolac nerve guides for sensory nerve repair in the hand. J Hand Surg [Am]. 2005;30(3):513–8.CrossRefGoogle Scholar
  54. 54.
    Bushnell BD, McWilliams AD, Whitener GB, Messer TM. Early clinical experience with collagen nerve tubes in digital nerve repair. J Hand Surg [Am]. 2008;33(7):1081–7.CrossRefGoogle Scholar
  55. 55.
    Phemister D. Biologic principles in the healing of fractures and their bearing on treatment. Ann Surg. 1951;133(4):433–46.Google Scholar
  56. 56.
    Rath SN, Pryymachuk G, Bleiziffer OA, Lam CXF, Arkudas A, Ho STB, et al. Hyaluronan-based heparin-incorporated hydrogels for generation of axially vascularized bioartificial bone tissues: in vitro and in vivo evaluation in a PLDLLA-TCP-PCL-composite system. J Mater Sci Mater Med. 2011;22(5):1279–91.CrossRefGoogle Scholar
  57. 57.
    Johnson EO, Troupis T, Soucacos PN. Tissue-engineered vascularized bone grafts: basic science and clinical relevance to trauma and reconstructive microsurgery. Microsurgery. 2011;31(3):176–82.CrossRefGoogle Scholar
  58. 58.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.CrossRefGoogle Scholar
  59. 59.
    Ma K, Titan AL, Stafford M, Zheng CH, Levenston ME. Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels. Acta Biomater. 2012;8(10):3754–64.CrossRefGoogle Scholar
  60. 60.
    Unterman SA, Gibson M, Lee JH, Crist J, Chansakul T, Yang EC et al. Hyaluronic Acid-Binding Scaffold for Articular Cartilage Repair. Tissue Eng Part A. 2012.Google Scholar
  61. 61.
    Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M. State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med. 2011;5(4):e36–51.CrossRefGoogle Scholar
  62. 62.
    Gilbert S. Conceptual breakthroughs in developmental biology. J Biosci. 1998;23:169–76.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Eugene Yong-Shun See
    • 1
  • Mangesh Kulkarni
    • 1
  • Abhay Pandit
    • 1
    Email author
  1. 1.Network of Excellence for Functional Biomaterials (NFB)National University of IrelandGalwayIreland

Personalised recommendations