Journal of Materials Science: Materials in Medicine

, Volume 24, Issue 12, pp 2889–2896 | Cite as

Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering

  • A. Kroustalli
  • A. E. Zisimopoulou
  • S. Koch
  • L. Rongen
  • D. DeligianniEmail author
  • S. Diamantouros
  • G. Athanassiou
  • M. Kokozidou
  • D. Mavrilas
  • S. Jockenhoevel


Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.


Chitosan Polylactic Acid Ultimate Stress Myofibroblast Cell Relevant Cell Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partly supported with a Greek-German bilateral cooperation program IKY & DAAD (IKYDA 2010).


  1. 1.
    Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–90.CrossRefGoogle Scholar
  2. 2.
    Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N. Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biological Macromol. 2010;46:281–3.CrossRefGoogle Scholar
  3. 3.
    Savaiano JK, Webster TJ. Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites. Biomaterials. 2004;25(7/8):1205–13.CrossRefGoogle Scholar
  4. 4.
    Venkatesan J, Kim S-K. Chitosan composites for bone tissue engineering—an overview. Mar Drugs. 2010;8:2252–66.CrossRefGoogle Scholar
  5. 5.
    Upadhyayula VKK, Gadhamshetty V. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnology Adv. 2010;28:802–16.CrossRefGoogle Scholar
  6. 6.
    Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, Ferrer ML, del Monte F. Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials. 2008;29(1):94–102.CrossRefGoogle Scholar
  7. 7.
    Fang N, Zhu A, Chan-Park MB, Chan V. Adhesion contact dynamics of fibroblasts on biomacromolecular surfaces. Macromol Bioscience. 2005;5(10):1022–31.CrossRefGoogle Scholar
  8. 8.
    Huang YC, Hsu SH, Kuo WC, Chang-Chien CL, Cheng H, Huang YY. Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth. J Biomed Mater Res A. 2011;99(1):86–93.Google Scholar
  9. 9.
    Liao H, Qi R, Shen M, Cao X, Guo R, Zhang Y, Shi X. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloids Surf B. 2011;84:528–35.CrossRefGoogle Scholar
  10. 10.
    Tutak W, Park KH, Vasilov A, Starovoytov V, Fanchini G, Cai SQ, Partridge NC, Sesti F, Chhowalla M. Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks. Nanotechnology. 2009;20:255101.CrossRefGoogle Scholar
  11. 11.
    Yildirim ED, Yin X, Nair K, Sun W. Fabrication, characterization, and biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. J Biomed Mater Res B. 2008;87(2):406–14.Google Scholar
  12. 12.
    Zhao Q, Yin J, Feng X, Shi Z, Ge Z, Jin Z. A biocompatible chitosan composite containing phosphotungstic acid modified single-walled carbon nanotubes. J Nanosci Nanotechnol. 2010;10(11):7126–9.CrossRefGoogle Scholar
  13. 13.
    Hirano S, Fujitani Y, Furuyama A, Kanno S. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2010;249(1):8–15.CrossRefGoogle Scholar
  14. 14.
    Reddy AR, Reddy YN, Krishna DR, Himabindu V. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology. 2010;272(1–3):11–6.CrossRefGoogle Scholar
  15. 15.
    Tsukahara T, Haniu H. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells. Mol Cell Biochem. 2011;352(1–2):57–63.CrossRefGoogle Scholar
  16. 16.
    Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacro-molecules. 2010;11(9):2345–51.CrossRefGoogle Scholar
  17. 17.
    Carson L, Kelly-Brown C, Stewart M, Oki A, Regisford G, Luo Z, Bakhmutov VI. Synthesis and characterization of chitosan–carbon nanotube composites. Mater Lett. 2009;63(6–7):617–20.CrossRefGoogle Scholar
  18. 18.
    Tschoeke B, Flanagan TC, Koch S, Sri Harwoko M, Deichmann T, Ella V, et al. Tissue-engineered small caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. 2009;15:1909–18.CrossRefGoogle Scholar
  19. 19.
    Albanna MZ, Bou-Akl TH, Walters HL, Matthew HWT. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. J Mech Behavior Biomedical Mater. 2012;5(1):171–80.CrossRefGoogle Scholar
  20. 20.
    Byrne MT, Gun’ko YK. Recent advances in research on carbon nanotube–polymer composites. Adv Mater. 2010;22:1672–88.CrossRefGoogle Scholar
  21. 21.
    Zhao B, Wang J, Li ZJ, Liu P, Chen D, Zhang YF. Mechanical strength improvement of polypropylene threads modified by PVA/CNT composite coatings. Mater Lett. 2008;62:4380–2.CrossRefGoogle Scholar
  22. 22.
    Kim HS, Chae YS, Choi JH, Yoon JS, Jin HJ. Thermal properties of poly(ε-caprolactone)/multiwalled carbon nanotubes composites. Adv Compos Mater. 2008;17:157–66.CrossRefGoogle Scholar
  23. 23.
    Wang SF, Shen L, Zhang WD, Tong YJ. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules. 2005;6:3067–72.CrossRefGoogle Scholar
  24. 24.
    Spinks GM, Shin SR, Wallace GG, Whitten PG, Kim SI, Kim SJ. Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sens Actuat B. 2006;115:678–84.CrossRefGoogle Scholar
  25. 25.
    Pagoulatou E, Triantaphyllidou I-E, Vynios DH, Papachristou DJ, Koletsis E, Deligianni D, Mavrilas D. Biomechanical and structural changes following the decellularization of bovine pericardial tissues for use as a tissue engineering scaffold. J Mater Sci. 2012;23:1387–96.Google Scholar
  26. 26.
    Khan U, Ryan K, Blau WJ, Coleman JN. The effect of solvent choice on the mechanical properties of carbon nanotube-polymer composites. Compos Sci Technol. 2007;67:3158.CrossRefGoogle Scholar
  27. 27.
    van Vlimmeren MAA, Driessen-Mol A, van den Broek M, Bouten CVC, Baaijens FPT. Controlling matrix formation and cross-linking by hypoxia in cardiovascular tissue engineering. J Appl Physiol. 2010;109:1483–91.CrossRefGoogle Scholar
  28. 28.
    Zünd G, Hoerstrup SP, Schoeberlein A, Lachat M, Uhlschmid G, Vogt PR, Turina M. Tissue engineering: a new approach in cardiovascular surgery; seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg. 1998;13(2):160–4.CrossRefGoogle Scholar
  29. 29.
    Chupa JM, Foster AM, Sumner SR, Madihally SV, Matthew HW. Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials. 2000;21:2315–22.CrossRefGoogle Scholar
  30. 30.
    Chung TW, Lu YF, Wang SS, Lin YS, Chu SH. Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) chitosans. Biomaterials. 2002;23:4803–9.CrossRefGoogle Scholar
  31. 31.
    Wörle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006;6:1261–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Kroustalli
    • 1
  • A. E. Zisimopoulou
    • 1
  • S. Koch
    • 2
  • L. Rongen
    • 2
  • D. Deligianni
    • 1
    Email author
  • S. Diamantouros
    • 2
  • G. Athanassiou
    • 1
  • M. Kokozidou
    • 3
  • D. Mavrilas
    • 1
  • S. Jockenhoevel
    • 2
  1. 1.Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & AeronauticsUniversity of PatrasPatrasGreece
  2. 2.Department of Tissue Engineering & Textile ImplantsAME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen UniversityAachenGermany
  3. 3.Department of Vascular SurgeryEuropean Vascular Centre Aachen-Maastricht, University Hospital RWTH AachenAachenGermany

Personalised recommendations