Journal of Materials Science: Materials in Medicine

, Volume 24, Issue 12, pp 2749–2760 | Cite as

The association of hydrogel and biphasic calcium phosphate in the treatment of dehiscence-type peri-implant defects: an experimental study in dogs

  • Xavier Struillou
  • Mia Rakic
  • Zahi Badran
  • Laure Macquigneau
  • Caroline Colombeix
  • Paul Pilet
  • Christian Verner
  • Olivier Gauthier
  • Pierre Weiss
  • Assem Soueidan


Hydrogel polymers have many applications in regenerative medicine. The aim of this study in dogs was to investigate bone regeneration in dehiscence-type peri-implant defects created surgically and treated with (i) biphasic calcium phosphate (BCP) granules alone; (ii) a composite putty hydroxypropyl methylcellulose (HPMC)/BCP (MBCP/putty); and (iii) a polymer crosslinked membrane of silanized-HPMC (Si-HPMC/BCP) compared with empty controls. At 3 months, new bone formation was significantly more important in defects filled with HPMC/BCP or Si-HPMC/BCP compared with spontaneous healing in control (P = 0.032 and P = 0.046 respectively) and more substantial compared with BCP alone. Furthermore, new bone formation in direct contact with the implant surface was observed in all three groups treated with BCP. The addition of HPMC to the BCP granules may have enhanced the initial stability of the material within the blood clot in these large and complex osseous defects. The Si-HPMC hydrogel may also act as an occlusive membrane covering the BCP, which could improve the stability of the granules in the defect area. However, the crosslinking time of the Si-HPMC is too long for easy handling and the mechanical properties remain to be improved. The composite MBCP/putty appears to be a valuable bone-graft material in complex defects in periodontology and implantology. These encouraging results should now be confirmed in clinical studies.


Bone Regeneration Inductively Couple Plasma Atomic Emission Spectroscopy Bone Ingrowth Biphasic Calcium Phosphate Guide Bone Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The implants were kindly provided by Zimmer Dental Inc., USA. The study biomaterials were kindly provided by Biomatlante SARL, Vigneux de Bretagne, France.

Conflict of interest

The authors have no conflict of interests to declare.


  1. 1.
    Albrektsson T, Isidor F. Consensus report of session IV. In: Lang NP, Karring T, eds. Proceedings of the 1st European Workshop on Periodontology. Quintescence, Berlin 1994:365–369.Google Scholar
  2. 2.
    Klinge B, Meyle J, Working Group 2. Peri-implant tissue destruction. The Third EAO Consensus Conference 2012. Clin Oral Implants Res. 2012;23(6 Suppl):108–10. doi: 10.1111/j.1600-0501.2012.02555.x.CrossRefGoogle Scholar
  3. 3.
    Atieh MA, Alsabeeha NH, Faggion CM Jr, Duncan WJ. The frequency of peri-implant diseases: a systematic review and meta-analysis. J Periodontol. 2012;13. [Epub ahead of print].Google Scholar
  4. 4.
    Schwarz F, Sahm N, Schwarz K, Becker J. Impact of defect configuration on the clinical outcome following surgical regenerative therapy of peri-implantitis. J Clin Periodontol. 2010;37(5):449–55. doi: 10.1111/j.1600-051X.2010.01540.x.CrossRefGoogle Scholar
  5. 5.
    Schwarz F, Sager M, Ferrari D, Herten M, Wieland M, Becker J. Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive) and conventional SLA titanium implants: an immunohistochemical study in dogs. J Clin Periodontol. 2008;35(1):64–75.Google Scholar
  6. 6.
    Wikesjö UM, Susin C, Qahash M, Polimeni G, Leknes KN, Shanaman RH, Prasad HS, Rohrer MD, Hall J. The critical-size supraalveolar peri-implant defect model: characteristics and use. J Clin Periodontol. 2006;33(11):846–54.CrossRefGoogle Scholar
  7. 7.
    Pandit N, Gupta R, Gupta S. A comparative evaluation of biphasic calcium phosphate material and bioglass in the treatment of periodontal osseous defects: a clinical and radiological study. J Contemp Dent Pract. 2010;11(2):025–32.Google Scholar
  8. 8.
    LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742–53. doi: 10.1021/cr800427g.CrossRefGoogle Scholar
  9. 9.
    AlGhamdi AS, Shibly O, Ciancio SG. Osseous grafting part II: xenografts and alloplasts for periodontal regeneration—a literature review. J Int Acad Periodontol. 2010;12(2):39–44.Google Scholar
  10. 10.
    AlGhamdi AS, Shibly O, Ciancio SG. Osseous grafting part I: autografts and allografts for periodontal regeneration—a literature review. J Int Acad Periodontol. 2010;12(2):34–8.Google Scholar
  11. 11.
    Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003;14(3):195–200.CrossRefGoogle Scholar
  12. 12.
    Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B. 2009;90(1):171–81.Google Scholar
  13. 13.
    Peres MF, Ribeiro ED, Casarin RC, Ruiz KG, Junior FH, Sallum EA, Casati MZ. Hydroxyapatite/β-tricalcium phosphate and enamel matrix derivative for treatment of proximal class II furcation defects: a randomized clinical trial. J Clin Periodontol. 2013;40(3):252–9. doi: 10.1111/jcpe.12054.CrossRefGoogle Scholar
  14. 14.
    Froum SJ, Wallace SS, Cho SC, Elian N, Tarnow DP. Histomorphometric comparison of a biphasic bone ceramic to anorganic bovine bone for sinus augmentation: 6- to 8-month postsurgical assessment of vital bone formation. A pilot study. Int J Periodontics Restor Dent. 2008;28(3):273–81.Google Scholar
  15. 15.
    Cordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M. Maxillary sinus grafting with Bio-Oss or Straumann bone ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Implants Res. 2008;19(8):796–803. doi: 10.1111/j.1600-0501.2008.01565.x.CrossRefGoogle Scholar
  16. 16.
    Friedmann A, Dard M, Kleber BM, Bernimoulin JP, Bosshardt DD. Ridge augmentation and maxillary sinus grafting with a biphasic calcium phosphate: histologic and histomorphometric observations. Clin Oral Implants Res. 2009;20(7):708–14. doi: 10.1111/j.1600-0501.2009.01708.x.CrossRefGoogle Scholar
  17. 17.
    Bodde EW, Wolke JG, Kowalski RS, Jansen JA. Bone regeneration of porous beta-tricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep. J Biomed Mater Res A. 2007;82(3):711–22. doi: 10.1002/jbm.a.30990.Google Scholar
  18. 18.
    Boix D, Gauthier O, Guicheux J, Pilet P, Weiss P, Grimandi G, Daculsi G. Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: an experimental study in dogs. J Periodontol. 2004;75(5):663–71.CrossRefGoogle Scholar
  19. 19.
    Boix D, Weiss P, Gauthier O, Guicheux J, Bouler JM, Pilet P, et al. Injectable bone substitute to preserve alveolar ridge resorption after tooth extraction: a study in dog. J Mater Sci Mater Med. 2006;17(11):1145–52. doi: 10.1007/s10856-006-0542-7.CrossRefGoogle Scholar
  20. 20.
    Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, et al. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials. 2007;28(22):3295–305. doi: 10.1016/j.biomaterials.2007.04.006.CrossRefGoogle Scholar
  21. 21.
    Daculsi G, Uzel AP, Weiss P, Goyenvalle E, Aguado E. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J Mater Sci Mater Med. 2010;21(3):855–61. doi: 10.1007/s10856-009-3914-y.CrossRefGoogle Scholar
  22. 22.
    Sculean A, Nikolidakis D, Schwarz F. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials—biological foundation and preclinical evidence: a systematic review. J Clin Periodontol. 2008;35(8 Suppl):106–16. doi: 10.1111/j.1600-051X.2008.01263.x.CrossRefGoogle Scholar
  23. 23.
    Fatimi A, Tassin JF, Quillard S, Axelos MA, Weiss P. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials. 2008;29(5):533–43.CrossRefGoogle Scholar
  24. 24.
    Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle GF, et al. A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials. 2005;26(33):6643–51. doi: 10.1016/j.biomaterials.2005.04.057.CrossRefGoogle Scholar
  25. 25.
    Daculsi G, Uzel AP, Weiss P, Goyenvalle E, Aguado E. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J Mater Sci Mater Med. 2010;21(3):855–61. doi: 10.1007/s10856-009-3914-y.CrossRefGoogle Scholar
  26. 26.
    Struillou X, Boutigny H, Badran Z, Fellah BH, Gauthier O, Sourice S, Pilet P, Rouillon T, Layrolle P, Weiss P, Soueidan A. Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J Mater Sci Mater Med. 2011;22(7):1707–17. doi: 10.1007/s10856-011-4344-1 Epub 2011 May 25.CrossRefGoogle Scholar
  27. 27.
    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1(2):94–9. doi: 10.4103/0976-500X.72351.CrossRefGoogle Scholar
  28. 28.
    Berglundh T, Stavropoulos A, Working Group 1 of the VIII European Workshop on Periodontology. Preclinical in vivo research in implant dentistry. Consensus of the eighth European workshop on periodontology. J Clin Periodontol. 2012;39(12 Suppl):1–5. doi: 10.1111/j.1600-051X.2011.01827.x.CrossRefGoogle Scholar
  29. 29.
    Schwarz F, Iglhaut G, Becker J. Quality assessment of reporting of animal studies on pathogenesis and treatment of peri-implant mucositis and peri-implantitis. A systematic review using the ARRIVE guidelines. J Clin Periodontol. 2012;39(12 Suppl):63–72. doi: 10.1111/j.1600-051X.2011.01838.x.CrossRefGoogle Scholar
  30. 30.
    Vignoletti F, Abrahamsson I. Quality of reporting of experimental research in implant dentistry. Critical aspects in design, outcome assessment and model validation. J Clin Periodontol. 2012;39(12 Suppl):6–27. doi: 10.1111/j.1600-051X.2011.01830.x.CrossRefGoogle Scholar
  31. 31.
    Bourges X, Weiss P, Daculsi G, Legeay G. Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci. 2002;99(3):215–28.CrossRefGoogle Scholar
  32. 32.
    Struillou X, Boutigny H, Soueidan A, Layrolle P. Experimental animal models in periodontology: a review. Open Dent J. 2010;4:37–47. doi: 10.2174/1874210601004010037.CrossRefGoogle Scholar
  33. 33.
    Schwarz F, Sager M, Kadelka I, Ferrari D, Becker J. Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs. J Clin Periodontol. 2010;37(5):466–73. doi: 10.1111/j.1600-051X.2010.01533.x.CrossRefGoogle Scholar
  34. 34.
    Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol. 2008;35(8 Suppl):286–91. doi: 10.1111/j.1600-051X.2008.01274.x.CrossRefGoogle Scholar
  35. 35.
    Renvert S, Roos-Jansåker AM, Claffey N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol. 2008;35(8 Suppl):305–15. doi: 10.1111/j.1600-051X.2008.01276.x.CrossRefGoogle Scholar
  36. 36.
    Claffey N, Clarke E, Polyzois I, Renvert S. Surgical treatment of peri-implantitis. J Clin Periodontol. 2008;35(8 Suppl):316–32. doi: 10.1111/j.1600-051X.2008.01277.x.CrossRefGoogle Scholar
  37. 37.
    Romanos GE, Weitz D. Therapy of peri-implant diseases. Where is the evidence? J Evid Based Dent Pract. 2012;12(3 Suppl):204–8. doi: 10.1016/S1532-3382(12)70038-6.Google Scholar
  38. 38.
    Froum SJ, Froum SH, Rosen PS. Successful management of peri-implantitis with a regenerative approach: a consecutive series of 51 treated implants with 3- to 7.5-year follow-up. Int J Periodontics Restor Dent. 2012;32(1):11–20.Google Scholar
  39. 39.
    Chiapasco M, Zaniboni M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin Oral Implants Res. 2009;20(Suppl 4):113–23. doi: 10.1111/j.1600-0501.2009.01781.x.CrossRefGoogle Scholar
  40. 40.
    Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57(1):3–14. doi: 10.1016/j.jpor.2012.12.001.CrossRefGoogle Scholar
  41. 41.
    Darby I. Periodontal materials. Aust Dent J. 2011;56(1 Suppl):107–18. doi: 10.1111/j.1834-7819.2010.01301.x.CrossRefGoogle Scholar
  42. 42.
    Xu C, Lei C, Meng L, Wang C, Song Y. Chitosan as a barrier membrane material in periodontal tissue regeneration. J Biomed Mater Res B. 2012;100(5):1435–43.Google Scholar
  43. 43.
    Shin SY, Park HN, Kim KH, Lee MH, Choi YS, Park YJ, Lee YM, Ku Y, Rhyu IC, Han SB, Lee SJ, Chung CP. Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol. 2005;76(10):1778–84.CrossRefGoogle Scholar
  44. 44.
    Kuo SM, Chang SJ, Chen TW, Kuan TC. Guided tissue regeneration for using a chitosan membrane: an experimental study in rats. J Biomed Mater Res A. 2006;76(2):408–15.Google Scholar
  45. 45.
    Teng SH, Lee EJ, Wang P, Shin DS, Kim HE. Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration. J Biomed Mater Res B. 2008;87(1):132–8. doi: 10.1002/jbm.b.31082.Google Scholar
  46. 46.
    Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A. 2009;88(3):569–80. doi: 10.1002/jbm.a.31897.Google Scholar
  47. 47.
    Jung RE, Hälg GA, Thoma DS, Hämmerle CH. A randomized, controlled clinical trial to evaluate a new membrane for guided bone regeneration around dental implants. Clin Oral Implants Res. 2009;20(2):162–8. doi: 10.1111/j.1600-0501.2008.01634.x.CrossRefGoogle Scholar
  48. 48.
    Dupraz A, Nguyen TP, Richard M, Daculsi G, Passuti N. Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material. Biomaterials. 1999;20(7):663–73.CrossRefGoogle Scholar
  49. 49.
    Gauthier O, Bouler JM, Weiss P, Bosco J, Aguado E, Daculsi G. Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone. 1999;25(2 Suppl):71S–4S.CrossRefGoogle Scholar
  50. 50.
    Gauthier O, Bouler JM, Weiss P, Bosco J, Daculsi G. Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes. J Biomed Mater Res. 1999;47(1):28–35.CrossRefGoogle Scholar
  51. 51.
    Schwarz F, Rothamel D, Herten M, Wüstefeld M, Sager M, Ferrari D, Becker J. Immunohistochemical characterization of guided bone regeneration at a dehiscence-type defect using different barrier membranes: an experimental study in dogs. Clin Oral Implants Res. 2008;19(4):402–15. doi: 10.1111/j.1600-0501.2007.01486.x.CrossRefGoogle Scholar
  52. 52.
    Polimeni G, Xiropaidis AV, Wikesjö UM. Biology and principles of periodontal wound healing/regeneration. Periodontol 2000. 2006;41:30–47.CrossRefGoogle Scholar
  53. 53.
    Saffarzadeh A, Gauthier O, Bilban M. Bagot D’Arc M, Daculsi G. Comparison of two bone substitute biomaterials consisting of a mixture of fibrin sealant (Tisseel) and MBCP (TricOs) with an autograft in sinus lift surgery in sheep. Clin Oral Implants Res. 2009;20(10):1133–9. doi: 10.1111/j.1600-0501.2009.01738.x.CrossRefGoogle Scholar
  54. 54.
    Sculean A, Windisch P, Szendroi-Kiss D, Horvath A, Rosta P, Becker J, et al. Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J Periodontol. 2008;79(10):1991–9. doi: 10.1902/jop.2008.080009.CrossRefGoogle Scholar
  55. 55.
    Malard O, Guicheux J, Bouler JM, Gauthier O, de Montreuil CB, Aguado E, et al. Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study. Bone. 2005;36(2):323–30. doi: 10.1016/j.bone.2004.07.018.CrossRefGoogle Scholar
  56. 56.
    Jegoux F, Goyenvalle E, Cognet R, Malard O, Moreau F, Daculsi G, et al. Mandibular segmental defect regenerated with macroporous biphasic calcium phosphate, collagen membrane, and bone marrow graft in dogs. Arch Otolaryngol Head Neck Surg. 2010;136(10):971–8. doi: 10.1001/archoto.2010.173.CrossRefGoogle Scholar
  57. 57.
    Abushahba F, Renvert S, Polyzois I, Claffey N. Effect of grafting materials on osseointegration of dental implants surrounded by circumferential bone defects. An experimental study in the dog. Clin Oral Implants Res. 2008;19(4):329–34. doi: 10.1111/j.1600-0501.2007.01455.x.CrossRefGoogle Scholar
  58. 58.
    Herten M, Jung RE, Ferrari D, Rothamel D, Golubovic V, Molenberg A, Hämmerle CH, Becker J, Schwarz F. Biodegradation of different synthetic hydrogels made of polyethylene glycol hydrogel/RGD-peptide modifications: an immunohistochemical study in rats. Clin Oral Implants Res. 2009;20(2):116–25. doi: 10.1111/j.1600-0501.2008.01622.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xavier Struillou
    • 1
    • 2
  • Mia Rakic
    • 3
  • Zahi Badran
    • 1
    • 2
  • Laure Macquigneau
    • 1
    • 2
  • Caroline Colombeix
    • 1
  • Paul Pilet
    • 1
  • Christian Verner
    • 2
  • Olivier Gauthier
    • 4
  • Pierre Weiss
    • 1
  • Assem Soueidan
    • 1
    • 2
  1. 1.Laboratory of Osteo-Articular and Dental Tissue Engineering (LIOAD), INSERM, U791NantesFrance
  2. 2.Department of PeriodontologyUFR d’odontologieNantesFrance
  3. 3.Department of Periodontology, Faculty of Dental MedicineUniversity of BelgradeBelgradeSerbia
  4. 4.Department of Small Animal SurgeryONIRIS, College of Veterinary MedicineNantesFrance

Personalised recommendations