Journal of Materials Science: Materials in Medicine

, Volume 24, Issue 10, pp 2277–2286

Rapidly in situ forming adhesive hydrogel based on a PEG-maleimide modified polypeptide through Michael addition

Article

Abstract

Polyethylene glycol-maleimide modified ε-polylysine (EPL-PEG-MAL) with a unique comb-shaped structure was designed and used as a novel crosslinker for thiolated chitosan (CSS). Novel polysaccharide/polypeptide bionic hydrogels based on CSS and EPL-PEG-MAL could form rapidly in situ within 1 min via Michael addition under physiological conditions. Rheological studies showed that introduction of PEG can dramatically improve the storage modulus (G′) of the hydrogels and the optimal hydrogel system showed superior G′ of 1,614 Pa. The maximum adhesion strength reached 148 kPa, six times higher than that of fibrin glue. Cytotoxicity test indicated that the hydrogel is nontoxic toward growth of L929 cells. Gelation time, swelling ratio, storage modulus and adhesion strength of the hydrogels can be modulated by the content of PEG-maleimide, CSS concentration and molar ratio of maleimide group to thiol group. Benefiting from the fast gelation behaviors, desirable mechanical properties, relatively high adhesive performance and no cytotoxicity, these hydrogels have the potential applications as promising biomaterials for tissue adhesion and sealing.

Supplementary material

10856_2013_4987_MOESM1_ESM.docx (73 kb)
Supplementary material 1 (DOCX 72 kb)

References

  1. 1.
    Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials. 2002;23(3):833–40.CrossRefGoogle Scholar
  2. 2.
    Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, Yura H, Sato M, Kikuchi M, Kurita A, Maehara T. Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications. Surgery. 2001;130(5):844–50.CrossRefGoogle Scholar
  3. 3.
    Ogden S, Griffiths TW. A review of minimally invasive cosmetic procedures. Brit J Dermatol. 2008;159(5):1036–50.Google Scholar
  4. 4.
    Otani Y, Tabata Y, Ikada Y. Hemostatic capability of rapidly curable glues from gelatin, poly(l-glutamic acid), and carbodiimide. Biomaterials. 1998;19(22):2091–8.CrossRefGoogle Scholar
  5. 5.
    Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN. In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release. 2002;78(1–3):199–209.CrossRefGoogle Scholar
  6. 6.
    Akgün A, Kuru S, Uraldi C, Tekin O, Karip B, Tug T, Öngören AU. Early effects of fibrin sealant on colonic anastomosis in rats: an experimental and case-control study. Tech Coloproctol. 2006;10(3):208–14.CrossRefGoogle Scholar
  7. 7.
    Lee MGM, Jones D. Applications of fibrin sealant in surgery. Surg Innov. 2005;12(3):203–13.CrossRefGoogle Scholar
  8. 8.
    Salameh JR, Schwartz JH, Hildebrandt DA. Can LigaSure seal and divide the small bowel. Am J Surg. 2006;191(6):791–3.CrossRefGoogle Scholar
  9. 9.
    Saygun O, Topaloglu S, Avsar FM, Ozel H, Hucumenoglu S, Sahin M, Hengirmen S. Reinforcement of the suture line with an ePTFE graft attached with histoacryl glue in duodenal trauma. Can J Surg. 2006;49(2):107–12.Google Scholar
  10. 10.
    Thetter O. Fibrin adhesive and its application in thoracic surgery. Thorac Cardiovasc Surg. 1981;29(5):290–2.CrossRefGoogle Scholar
  11. 11.
    Brennan M. Fibrin glue. Blood Rev. 1991;5:240–4.CrossRefGoogle Scholar
  12. 12.
    Tseng YC, Tabata Y, Hyon SH, Ikada Y. In vivo toxicity test of 2-cyanoacrylate polymers by cell culture method. J Biomed Mater Res. 1990;24(10):1355–67.CrossRefGoogle Scholar
  13. 13.
    Lämsä T, Jin HT, Sand J, Nordback I. Tissue adhesives and the pancreas: biocompatibility and adhesive properties of 6 preparations. Pancreas. 2008;36(3):261–6.CrossRefGoogle Scholar
  14. 14.
    Lee Y, Chung HJ, Yeo S, Ahn CH, Lee H, Messersmith PB, Park TG. Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter. 2010;6(5):977–83.CrossRefGoogle Scholar
  15. 15.
    Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SI, Lee YC. Thiolation of chitosan. Attachment of proteins via thioether formation. Biomacromolecules. 2005;6(2):880–4.CrossRefGoogle Scholar
  16. 16.
    Fakhry A, Schneider GB, Zaharias R, Senel S. Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials. 2004;25(11):2075–9.CrossRefGoogle Scholar
  17. 17.
    Lauto A, Hook J, Doran M, Camacho F, Poole-Warren LA, Avolio A, Foster LJR. Chitosan adhesive for laser tissue repair: in vitro characterization. Laser Surg Med. 2005;36(3):193–201.CrossRefGoogle Scholar
  18. 18.
    Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M. Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res. 2000;49(2):289–95.CrossRefGoogle Scholar
  19. 19.
    Yamada K, Chen TH, Kumar G, Vesnovsky O, Topoleski LDT, Payne GF. Chitosan based water-resistant adhesive. Analogy to mussel glue. Biomacromolecules. 2000;1(2):252–8.CrossRefGoogle Scholar
  20. 20.
    Yamada K, Aoki T, Ikeda N, Hirata M. Application of enzymatically gelled chitosan solutions to water-resistant adhesives. J Appl Polym Sci. 2007;104(3):1818–27.CrossRefGoogle Scholar
  21. 21.
    Vernon B, Tirelli N, Bächi T, Haldimann D, Hubbell JA. Water-borne, in situ crosslinked biomaterials from phase-segregated precursors. J Biomed Mater Res. 2003;64A(3):447–56.CrossRefGoogle Scholar
  22. 22.
    Teng DY, Wu ZM, Zhang XG, Wang YX, Zheng C, Wang Z, Li CX. Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer. 2010;51(3):639–46.CrossRefGoogle Scholar
  23. 23.
    Patterson J, Hubbell JA. SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials. 2011;32(5):1301–10.CrossRefGoogle Scholar
  24. 24.
    Hermanson GT. Bioconjugate techniques. 2nd ed. San Diego: Academic Press; 1996.Google Scholar
  25. 25.
    Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N, Sulchek TA, Barker TH, García AJ. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater. 2012;24(1):64–70.CrossRefGoogle Scholar
  26. 26.
    Krauland AH, Hoffer MH, Bernkop-Schnürch A. Viscoelastic properties of a new in situ gelling thiolated chitosan conjugate. Drug Dev Ind Pharm. 2005;31(9):885–93.CrossRefGoogle Scholar
  27. 27.
    Shih IL, Shen MH, Van YT. Microbial synthesis of poly(ε-lysine) and its various applications. Bioresource Technol. 2006;97(9):1148–59.CrossRefGoogle Scholar
  28. 28.
    Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials. 2006;27(11):2370–9.CrossRefGoogle Scholar
  29. 29.
    Wang T, Nie J, Yang DZ. Dextran and gelatin based photocrosslinkable tissue adhesive. Carbohydr Polym. 2012;90(4):1428–36.CrossRefGoogle Scholar
  30. 30.
    Li HB, Niu R, Yang JL, Nie J, Yang DZ. Photocrosslinkable tissue adhesive based on dextran. Carbohydr Polym. 2011;86(4):1578–85.CrossRefGoogle Scholar
  31. 31.
    Singh R. A sensitive assay for maleimide groups. Bioconjugate Chem. 1994;5(4):348–51.CrossRefGoogle Scholar
  32. 32.
    Yang C, Xu L, Zhou Y, Zhang XM, Huang X, Wang M, Han Y, Zhai ML, Wei SC, Li JQ. A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym. 2010;82(4):1297–305.CrossRefGoogle Scholar
  33. 33.
    Artzi N, Shazly T, Crespo C, Ramos AB, Chenault HK, Edelman ER. Characterization of star adhesive sealants based on PEG/dextran hydrogels. Macromol Biosci. 2009;9(8):754–65.CrossRefGoogle Scholar
  34. 34.
    Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules. 2003;4:713–22.CrossRefGoogle Scholar
  35. 35.
    Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG. Highly stretchable and tough hydrogels. Nature. 2012;489:133–6.CrossRefGoogle Scholar
  36. 36.
    Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG. Progress toward robust polymer hydrogels. Aust J Chem. 2011;64(8):1007–25.CrossRefGoogle Scholar
  37. 37.
    Takaoka M, Nakamura T, Sugai H, Bentley AJ, Nakajima N, Fullwood NJ, Yokoi N, Hyon SH, Kinoshita S. Sutureless amniotic membrane transplantation for ocular surface reconstruction with a chemically defined bioadhesive. Biomaterials. 2008;29(19):2923–31.CrossRefGoogle Scholar
  38. 38.
    Hiemstra C, Van der Aa LJ, Zhong ZY, Dijkstra PJ, Feijen J. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition. Biomacromolecules. 2007;8(5):1548–56.CrossRefGoogle Scholar
  39. 39.
    Buwalda SJ, Dijkstra PJ, Feijen J. In situ forming poly(ethylene glycol)-poly(l-lactide) hydrogels via Michael addition: mechanical properties, degradation, and protein release. Macromol Chem Phys. 2012;213:766–75.CrossRefGoogle Scholar
  40. 40.
    Tournier EJM, Wallach J, Blond P. Sulfosuccinimidyl 4-(N-maleimidomethyl)-1-cyclohexane carboxylate as a bifunctional immobilization agent. Optimization of the coupling conditions. Anal Chim Acta. 1998;361(1–2):33–44.CrossRefGoogle Scholar
  41. 41.
    Mather BD, Viswanathan K, Miller KM, Long TE. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci. 2006;31(5):487–531.CrossRefGoogle Scholar
  42. 42.
    Nie W, Yuan XY, Zhao J, Zhou YL, Bao HJ. Rapidly in situ forming chitosan/ε-polylysine hydrogels for adhesive sealants and hemostatic materials. Carbohydr Polym. 2013;96:342–8.CrossRefGoogle Scholar
  43. 43.
    Serrero A, Trombotto S, Bayon Y, Gravagna P, Montanari S, David L. Polysaccharide-based adhesive for biomedical applications: correlation between rheological behavior and adhesion. Biomacromolecules. 2011;12(5):1556–66.CrossRefGoogle Scholar
  44. 44.
    Bernkop-Schnürch A, Weithaler A, Albrecht K, Greimel A. Thiomers: preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. Int J Pharm. 2006;317(1):76–81.CrossRefGoogle Scholar
  45. 45.
    Li ZH, DZ Y, Ma GP, Xu Q, Chen XM, Lu FM, Nie J. Synthesis and characterization of chitosan-based hydrogels. Int J Biol Macromol. 2009;44:121–7.CrossRefGoogle Scholar
  46. 46.
    Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Department of Polymer MaterialsSchool of Materials Science and Engineering, Tianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations