Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide

  • Nela Buchtová
  • Gildas Réthoré
  • Cécile Boyer
  • Jérôme Guicheux
  • Frédéric Rambaud
  • Karine Vallé
  • Philippe Belleville
  • Clément Sanchez
  • Olivier Chauvet
  • Pierre Weiss
  • Jean Le BideauEmail author


Injectable materials for mini-invasive surgery of cartilage are synthesized and thoroughly studied. The concept of these hybrid materials is based on providing high enough mechanical performances along with a good medium for chondrocytes proliferation. The unusual nanocomposite hydrogels presented herein are based on siloxane derived hydroxypropylmethylcellulose (Si-HPMC) interlinked with mesoporous silica nanofibers. The mandatory homogeneity of the nanocomposites is checked by fluorescent methods, which show that the silica nanofibres dispersion is realized down to nanometric scale, suggesting an efficient immobilization of the silica nanofibres onto the Si-HPMC scaffold. Such dispersion and immobilization are reached thanks to the chemical affinity between the hydrophilic silica nanofibers and the pendant silanolate groups of the Si-HPMC chains. Tuning the amount of nanocharges allows tuning the resulting mechanical features of these injectable biocompatible hybrid hydrogels. hASC stem cells and SW1353 chondrocytic cells viability is checked within the nanocomposite hydrogels up to 3 wt% of silica nanofibers.

Graphical Abstract


Dynamic Mechanical Analysis SW1353 Cell Hydrogel Sample Nanocomposite Hydrogel Online Resource Figure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors thank warmly Dr. P. Bertoncini for help with epi-fluorescence experiences and Dr. C. Vinatier for help with SW1353 cell line and biocompatibility experiences. This work was funded by the Région Pays de la Loire within the BIOREGOS 2 project.

Supplementary material

10856_2013_4951_MOESM1_ESM.pdf (422 kb)
Supplementary material 1 (PDF 421 kb)


  1. 1.
    Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998;28:192–202.Google Scholar
  2. 2.
    Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6:13–22.CrossRefGoogle Scholar
  3. 3.
    Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10:3223–30.CrossRefGoogle Scholar
  4. 4.
    Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117–8.CrossRefGoogle Scholar
  5. 5.
    Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials. 2007;28:5185–92.CrossRefGoogle Scholar
  6. 6.
    Zohuriaan-Mehr M, Omidian H, Doroudiani S, Kabiri K. Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci. 2010;45:5711–35.CrossRefGoogle Scholar
  7. 7.
    Richter A, Gerlach G, Arndt K-F. Hydrogels for actuators. In: Wolfbeis OS, editor. Hydrogel sensors and actuators. Berlin: Springer; 2010. p. 221–48.Google Scholar
  8. 8.
    Choudhury NA, Sampath S, Shukla AK. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci. 2009;2:55–67.CrossRefGoogle Scholar
  9. 9.
    Khaleque T, Abu-Salih S, Saunders JR, Moussa W. Experimental methods of actuation, characterization and prototyping of hydrogels for BioMEMS/NEMS applications. J Nanosci Nanotechnol. 2011;11:2470–9.CrossRefGoogle Scholar
  10. 10.
    Hendrickson GR, Andrew Lyon L. Bioresponsive hydrogels for sensing applications. Soft Matter. 2009;5:29–35.CrossRefGoogle Scholar
  11. 11.
    Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–51.CrossRefGoogle Scholar
  12. 12.
    Deligkaris K, Tadele TS, Olthuis W, van den Berg A. Hydrogel based devices for biomedical applications. Sens Actuators B. 2010;147:765–74.CrossRefGoogle Scholar
  13. 13.
    Kobayashi M, Hyu HS. Development and evaluation of polyvinyl alcohol-hydrogels as an artificial articular cartilage for orthopaedic implants. Materials. 2010;3:2753–71.CrossRefGoogle Scholar
  14. 14.
    Rimmer S. Synthesis of hydrogels for biomedical applications: control of structure and properties. In: Rimmer S, editor. Biomedical hydrogels. Cambridge: Woodhead Publishing in Materials; 2011. p. 51–62.CrossRefGoogle Scholar
  15. 15.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21:3307–29.CrossRefGoogle Scholar
  16. 16.
    Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter. 2010;6:2364–71.CrossRefGoogle Scholar
  17. 17.
    Lindblad Söderqvist M, Sjöberg J, Albertsson A-C, Hartman J. Hydrogels from polysaccharides for biomedical applications. In: Argyropoulos DS, editor. Materials, chemicals, and energy from forest biomass. Washington: American Chemical Society; 2007. p. 153–67.CrossRefGoogle Scholar
  18. 18.
    Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387–408.CrossRefGoogle Scholar
  19. 19.
    Sannino A, Demitri C, Madaghiele M. Biodegradable cellulose-based hydrogels: design and applications. Materials. 2009;2:353–73.CrossRefGoogle Scholar
  20. 20.
    Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41–56.CrossRefGoogle Scholar
  21. 21.
    Weiss P, Fatimi A. Injectable composites for bone repair. In: Luigi A, editor. Biomedical composites. Cambridge: Woodhead Publishing Ltd.; 2010.Google Scholar
  22. 22.
    Nair LS, Laurencin CT, Tandon M. Injectable hydrogels as biomaterials. In: Basu B, Katti DS, Kumar A, editors. Advanced biomaterials: fundamentals, processing, and applications. Hoboken: Wiley; 2009. p. 179–203.Google Scholar
  23. 23.
    Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials. 2010;3:1746–67.CrossRefGoogle Scholar
  24. 24.
    Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37:1473–81.CrossRefGoogle Scholar
  25. 25.
    Lapkowski M, Weiss P, Daculsi G, Dupraz A. Patent 1997 WO A1 9705911. 1995 FR 95-9582.Google Scholar
  26. 26.
    Bourges X, Weiss P, Daculsi G, Legeay G. Synthesis and general properties of silatedhydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci. 2002;99:215–28.CrossRefGoogle Scholar
  27. 27.
    Fatimi A, Tassin J-F, Quillard S, Axelos MAV, Weiss P. The rheological properties of silatedhydroxypropyl methylcellulose tissue engineering matrices. Biomaterials. 2008;29:533–43.CrossRefGoogle Scholar
  28. 28.
    Calvert P. Hydrogels for soft machines. Adv Mater. 2009;21:743–56.CrossRefGoogle Scholar
  29. 29.
    Levental I, Georges PC, Janmey PA. Soft biological materials and their impact on cell function. Soft Matter. 2007;3:299–306.CrossRefGoogle Scholar
  30. 30.
    Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.CrossRefGoogle Scholar
  31. 31.
    Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673–7.CrossRefGoogle Scholar
  32. 32.
    Discher DE, Janmey P, Wang Y-L. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43.CrossRefGoogle Scholar
  33. 33.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.CrossRefGoogle Scholar
  34. 34.
    Tse JR, Engler AJ. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE. 2011;6:e15978.CrossRefGoogle Scholar
  35. 35.
    Yang S, Zhao L, Yu C, Zhou X, Tang J, Yuan P, Chen D, Zhao D. On the origin of helical mesostructures. J Am Chem Soc. 2006;128:10460–6.CrossRefGoogle Scholar
  36. 36.
    Rambaud F, Vallé K, Thibaud S, Julián-López B, Sanchez C. One pot synthesis of functional helicoidal hybrid organic-inorganic nanofibers with periodically organized mesoporosity. Adv Funct Mater. 2009;19:2896–905.CrossRefGoogle Scholar
  37. 37.
    Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117:1–9.CrossRefGoogle Scholar
  38. 38.
    Weiss P, Vinatier C, Guicheux J, Grimandi G, Daculsi G. A self-setting hydrogel as an extracellular synthetic matrix for tissue engineering. Key Eng Mater. 2004;254–256:1107–10.CrossRefGoogle Scholar
  39. 39.
    Bourges X, Schmitt M, Amouriq Y, Daculsi G, Legeay G, Weiss P. Interaction between hydroxypropyl methylcellulose and biphasic calcium phosphate after steam sterilisation: capillary gas chromatography studies. J Biomat Sci Polym E. 2001;12:573–9.CrossRefGoogle Scholar
  40. 40.
    Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle GF, Vignes-Colombeix C, Chadjichristos C, Galera P, Daculsi G, Guicheux JA. Silanized hydroxypropyl methylcellulose hydrogel for the threedimensional culture of chondrocytes. Biomaterials. 2005;26:6643–51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nela Buchtová
    • 1
  • Gildas Réthoré
    • 2
    • 3
  • Cécile Boyer
    • 2
    • 3
  • Jérôme Guicheux
    • 2
    • 3
  • Frédéric Rambaud
    • 4
  • Karine Vallé
    • 4
  • Philippe Belleville
    • 4
  • Clément Sanchez
    • 5
  • Olivier Chauvet
    • 1
  • Pierre Weiss
    • 2
    • 3
  • Jean Le Bideau
    • 1
    Email author
  1. 1.Institut des Matériaux Jean Rouxel (IMN), CNRS UMR 6502Université de NantesNantes Cedex 3France
  2. 2.INSERM, UMRS 791, Laboratoire d’Ingéniérie Ostéo-Articulaire et Dentaire (LIOAD)Faculté ďOdontologie, Université de NantesNantes Cedex 1France
  3. 3.Centre Hospitalier, Université de Hôtel-DieuNantes Cedex 1France
  4. 4.CEA, DAM, Le RipaultMontsFrance
  5. 5.Chimie de la Matière Condensée de Paris, CNRS UMR 7574UPMC Université Paris 06, Collège de FranceParisFrance

Personalised recommendations