The effect of rhBMP-2 and PRP delivery by biodegradable β-tricalcium phosphate scaffolds on new bone formation in a non-through rabbit cranial defect model

  • Hyun-Pil Lim
  • Angel E. Mercado-Pagan
  • Kwi-Dug Yun
  • Seong-Soo Kang
  • Taek-Hue Choi
  • Julius Bishop
  • Jeong-Tae Koh
  • William Maloney
  • Kwang-Min Lee
  • Yunzhi Peter Yang
  • Sang-Won Park


This study evaluated whether the combination of biodegradable β-tricalcium phosphate (β-TCP) scaffolds with recombinant human bone morphogenetic protein-2 (rhBMP-2) or platelet-rich plasma (PRP) could accelerate bone formation and increase bone height using a rabbit non-through cranial bone defect model. Four non-through cylindrical bone defects with a diameter of 8-mm were surgically created on the cranium of rabbits. β-TCP scaffolds in the presence and absence of impregnated rhBMP-2 or PRP were placed into the defects. At 8 and 16 weeks after implantation, samples were dissected and fixed for analysis by microcomputed tomography and histology. Only defects with rhBMP-2 impregnated β-TCP scaffolds showed significantly enhanced bone formation compared to non-impregnated β-TCP scaffolds (P < 0.05). Although new bone was higher than adjacent bone at 8 weeks after implantation, vertical bone augmentation was not observed at 16 weeks after implantation, probably due to scaffold resorption occurring concurrently with new bone formation.


Bone Formation Bone Defect Adjacent Bone Bone Augmentation Ceramic Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge the support of the Chonnam National University Hospital Research Institute of Clinical Medicine (Gwangju, Republic of Korea), the National Institutes of Health (NIH, United States), and the Department of Defense (DOD, United States) in the form of Research Grants CRI 11061-1, NIH AR057837 (NIAMS), NIH DE021468 (NIDCR), DOD W81XWH-10-1-0966 (PRORP), DOD W81XWH-10-200-10 (Airlift Research Foundation) and DOD W81XWH-11-2-0168-P4 (Alliance of NanoHealth).

Supplementary material

10856_2013_4939_MOESM1_ESM.pdf (984 kb)
Supplementary material 1 (PDF 983 kb)


  1. 1.
    Wayne DB, Trajtenberg CP, Hyman DJ. Tooth and periodontal disease: a review for the primary-care physician. South Med J. 2001;94:925–32.Google Scholar
  2. 2.
    Yang Y, Oh N, Liu Y, Chen W, Oh S, Appleford M, Kim S, Kim K, Park S, Bumgardner J, Haggard W, Ong J. Enhancing osseointegration using surface-modified titanium implants. JOM-J Min Met Mat Soc. 2006;58:71–6.CrossRefGoogle Scholar
  3. 3.
    Chow LC. Calcium phosphate cements. Monogr Oral Sci. 2001;18:148–63.CrossRefGoogle Scholar
  4. 4.
    LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr Oral Sci. 1991;15:1–201.Google Scholar
  5. 5.
    Story BJ, Wagner WR, Gaisser DM, Cook SD, Rust-Dawicki AM. In vivo performance of a modified CSTi dental implant coating. Int J Oral Maxillofac Implants. 1998;13:749–57.Google Scholar
  6. 6.
    Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng. 2004;32:1728–43.CrossRefGoogle Scholar
  7. 7.
    Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng B. 2010;16:523–39.CrossRefGoogle Scholar
  8. 8.
    Impens S, Schelstraete R, Luyten J, Mullens S, Thijs I, van Humbeeck J, Schrooten J. Production and characterisation of porous calcium phosphate structures with controllable hydroxyapatite/b-tricalcium phosphate ratios. Adv Appl Ceram. 2009;108:494–500.CrossRefGoogle Scholar
  9. 9.
    Li X, Li D, Lu B, Tang Y. Design and fabrication of CAP scaffolds by indirect solid free form fabrication. Rapid Prototyp J. 2005;11:312–8.CrossRefGoogle Scholar
  10. 10.
    Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VKC, Wootton DM, Lelkes PI, Zhou J. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials. 2006;27:4399–408.CrossRefGoogle Scholar
  11. 11.
    Vivanco J, Aiyangar A, Araneda A, Ploeg H-L. Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds. J Mech Behav Biomed Mater. 2012;9:137–52.CrossRefGoogle Scholar
  12. 12.
    Kang Y, Kim S, Khademhosseini A, Yang Y. Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2. Biomaterials. 2011;32:6119–30.Google Scholar
  13. 13.
    Kang Y, Scully A, Young DA, Kim S, Tsao H, Sen M, Yang Y. Enhanced mechanical performance and biological evaluation of a PLGA coated b-TCP composite scaffold for load-bearing applications. Eur Polym J. 2011;47:1569–77.CrossRefGoogle Scholar
  14. 14.
    Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, Kang Y, Yang Y, Khademhosseini A. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng B. 2012;18(5):363–82.Google Scholar
  15. 15.
    Yang Y, Kang Y, Sen M, Park S. Bioceramics in tissue engineering. In: Burdick J, Mauck R, editors. Biomaterials for tissue engineering applications: a review of the past and future trends. New York: Springer Wien; 2011. p. 179–208.CrossRefGoogle Scholar
  16. 16.
    Wozney JM. The potential role of bone morphogenetic proteins in periodontal reconstruction. J Periodontol. 1995;66:506–10.CrossRefGoogle Scholar
  17. 17.
    Alden TD, Pittman DD, Beres EJ, Hankins GR, Kallmes DF, Wisotsky BM, Kerns KM, Helm GA. Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg-Spine. 1999;90:109–14.CrossRefGoogle Scholar
  18. 18.
    Baltzer AW, Lattermann C, Whalen JD, Wooley P, Weiss K, Grimm M, Ghivizzani SC, Robbins PD, Evans CH. Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther. 2000;7:734–9.CrossRefGoogle Scholar
  19. 19.
    Forslund C. BMP treatment for improving tendon repair. Acta Orthop. 2003;74:1–30.CrossRefGoogle Scholar
  20. 20.
    Lieberman JR, Daluiski A, Stevenson S, Wu L, Mcallister P, Lee YP, Kabo JM, Finerman GAM, Berk AJ, Witte ON. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg. 1999;81:905–17.Google Scholar
  21. 21.
    Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9.CrossRefGoogle Scholar
  22. 22.
    Balemans W, Van Hul W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol. 2002;250:231–50.CrossRefGoogle Scholar
  23. 23.
    Perri B, Cooper M, Lauryssen C, Anand N. Adverse swelling associated with use of rh-BMP-2 in anterior cervical discectomy and fusion: a case study. Spine J. 2007;7:235–9.CrossRefGoogle Scholar
  24. 24.
    Tazaki J, Murata M, Akazawa T, Yamamoto M, Ito K, Arisue M, Shibata T, Tabata Y. BMP-2 release and dose-response studies in hydroxyapatite and β-tricalcium phosphate. Biomed Mater Eng. 2009;19:141–6.Google Scholar
  25. 25.
    Xu XL, Lou J, Tang T, Ng KW, Zhang J, Yu C, Dai K. Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J Biomed Mater Res B. 2005;75B:289–303.CrossRefGoogle Scholar
  26. 26.
    Ruhé PQ, Boerman OC, Russel FGM, Spauwen PHM, Mikos AG, Jansen JA. Controlled release of rhBMP-2 loaded poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. J Control Release. 2005;106:162–71.CrossRefGoogle Scholar
  27. 27.
    Jeon O, Song SJ, Yang HS, Bhang S-H, Kang S-W, Sung MA, Lee JH, Kim B-S. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem Biophys Res Commun. 2008;369:774–80.CrossRefGoogle Scholar
  28. 28.
    Gumieiro EH, Abrahão M, Jahn RS, Segretto H, Alves MT, Nannmark U, Granström G, Dib LL. Platelet-rich plasma in bone repair of irradiated tibiae of Wistar rats. Acta Cir Bras. 2010;25:257–63.CrossRefGoogle Scholar
  29. 29.
    Yamada Y, Ueda M, Hibi H, Nagasaka T. Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study. Cell Transpl. 2004;13:343–55.CrossRefGoogle Scholar
  30. 30.
    Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10:225–8.CrossRefGoogle Scholar
  31. 31.
    Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol. 1998;85:638–46.CrossRefGoogle Scholar
  32. 32.
    Anitua E. The use of plasma-rich growth factors (PRGF) in oral surgery. Pract Proced Aesthet Dent 2001;13:487–93, quiz 487–93.Google Scholar
  33. 33.
    Liu Y, Kim J-H, Young D, Kim S, Nishimoto SK, Yang Y. Novel template-casting technique for fabricating β-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J Biomed Mater Res A. 2009;92A:997–1006.Google Scholar
  34. 34.
    Hokugo A, Ozeki M, Kawakami O, Sugimoto K, Mushimoto K, Morita S, Tabata Y. Augmented bone regeneration activity of platelet-rich plasma by biodegradable gelatin hydrogel. Tissue Eng. 2005;11:1224–33.CrossRefGoogle Scholar
  35. 35.
    Müller R, Rüegsegger P. Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud Health Technol Inf. 1997;40:61–79.Google Scholar
  36. 36.
    Lan Levengood SK, Polak SJ, Poellmann MJ, Hoelzle DJ, Maki AJ, Clark SG, Wheeler MB, Wagoner Johnson AJ. The effect of BMP-2 on micro- and macro-scale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity. Acta Biomater. 2010;6:3283–91.CrossRefGoogle Scholar
  37. 37.
    Murai M, Sato S, Fukase Y, Yamada Y, Komiyama K, Ito K. Effects of different sizes of β-tricalcium phosphate particles on bone augmentation within a titanium cap in rabbit calvarium. Dent Mater J. 2006;25:87–96.CrossRefGoogle Scholar
  38. 38.
    Ruhé PQ, Kroese-Deutman HC, Wolke JGC, Spauwen PHM, Jansen JA. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials. 2004;25:2123–32.CrossRefGoogle Scholar
  39. 39.
    Wada T, Hara K, Ozawa H. Ultrastructural and histochemical study of β-tricalcium phosphate resorbing cells in periodontium of dogs. J Periodontal Res. 1989;24:391–401.CrossRefGoogle Scholar
  40. 40.
    Sánchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants. 2003;18:93–103.Google Scholar
  41. 41.
    Plachokova AS, Van Den Dolder J, Stoelinga PJ, Jansen JA. The bone regenerative effect of platelet-rich plasma in combination with an osteoconductive material in rat cranial defects. Clin Oral Implants Res. 2006;17:305–11.CrossRefGoogle Scholar
  42. 42.
    Plachokova AS, Van Den Dolder J, Stoelinga PJ, Jansen JA. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects. Clin Oral Implants Res. 2007;18:244–51.CrossRefGoogle Scholar
  43. 43.
    Kovács K, Velich N, Huszár T, Szabó G, Semjén G, Reiczigel J, Suba Z. Comparative study of β-tricalcium phosphate mixed with platelet-rich plasma versus β-tricalcium phosphate, a bone substitute material in dentistry. Acta Vet Hung. 2003;51:475–84.CrossRefGoogle Scholar
  44. 44.
    Poeschl PW, Ziya-Ghazvini F, Schicho K, Buchta C, Moser D, Seemann R, Ewers R, Schopper C. Application of platelet-rich plasma for enhanced bone regeneration in grafted sinus. J Oral Maxillofac Surg. 2012;70:657–64.CrossRefGoogle Scholar
  45. 45.
    Sammartino G, Tia M, Marenzi G, di Lauro AE, D’Agostino E, Claudio PP. Use of autologous platelet-rich plasma (PRP) in periodontal defect treatment after extraction of impacted mandibular third molars. J Oral Maxillofac Surg. 2005;63:766–70.CrossRefGoogle Scholar
  46. 46.
    Cabbar F, Güler N, Kürkcü M, Işeri U, Şençift K. The effect of bovine bone graft with or without platelet-rich plasma on maxillary sinus floor augmentation. J Oral Maxillofac Surg. 2011;69:2537–47.CrossRefGoogle Scholar
  47. 47.
    Thorwarth M, Wehrhan F, Schultze-Mosgau S, Wiltfang J, Schlegel KA. PRP modulates expression of bone matrix proteins in vivo without long-term effects on bone formation. Bone. 2006;38:30–40.CrossRefGoogle Scholar
  48. 48.
    Boyan BD, Schwartz Z, Patterson TE, Muschler G. Clinical use of platelet-rich plasma in orthopaedics. Am Acad Orthop Surg Now. 2007;1:44–6.Google Scholar
  49. 49.
    Araújo MG, Sonohara M, Hayacibara R, Cardaropoli G, Lindhe J. Lateral ridge augmentation by the use of grafts comprised of autologous bone or a biomaterial. An experiment in the dog. J Clin Periodontol. 2002;29:1122–31.CrossRefGoogle Scholar
  50. 50.
    Sartori S, Silvestri M, Forni F, Icaro Cornaglia A, Tesei P, Cattaneo V. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res. 2003;14:369–72.CrossRefGoogle Scholar
  51. 51.
    Schmid J, Hämmerle CHF, Flückiger L, Winkler JR, Olah AJ, Gogolewskiz S, Lang NP. Blood-filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in the rabbit using bioresorbable membranes. Clin Oral Implants Res. 1997;8:75–81.CrossRefGoogle Scholar
  52. 52.
    Okazaki K, Shimizu Y, Xu H, Ooya K. Blood-filled spaces with and without deproteinized bone grafts in guided bone regeneration. Clin Oral Implants Res. 2005;16:236–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hyun-Pil Lim
    • 1
  • Angel E. Mercado-Pagan
    • 2
  • Kwi-Dug Yun
    • 1
  • Seong-Soo Kang
    • 3
  • Taek-Hue Choi
    • 1
  • Julius Bishop
    • 2
  • Jeong-Tae Koh
    • 4
  • William Maloney
    • 2
  • Kwang-Min Lee
    • 5
  • Yunzhi Peter Yang
    • 2
    • 6
  • Sang-Won Park
    • 1
  1. 1.Department of ProsthodonticsDental Science Research Institute and BK21 Project, School of Dentistry, Chonnam National UniversityGwangjuSouth Korea
  2. 2.Department of Orthopedic SurgeryStanford UniversityStanfordUSA
  3. 3.College of Veterinary MedicineChonnam National UniversityGwangjuSouth Korea
  4. 4.Department of Pharmacology and Dental TherapeuticsDental Science Research Institute and BK21 Project, School of Dentistry, Chonnam National UniversityGwangjuSouth Korea
  5. 5.Department of Materials Science and EngineeringResearch Institute for Functional Surface Engineering, Chonnam National UniversityGwangjuSouth Korea
  6. 6.Department of Materials Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations