Advertisement

Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: in vitro and in vivo studies

  • M. Herrero-Climent
  • P. Lázaro
  • J. Vicente Rios
  • S. Lluch
  • M. Marqués
  • J. Guillem-Martí
  • F. J. GilEmail author
Article

Abstract

Rough implant surfaces have shown improved osseointegration rates. In a majority of dental implants, the microrough surfaces are obtained by grit blasting and/or acid-etching. The aim of this contribution was to evaluate the effects of acid-etching, after the grit-blasted treatment in titanium dental implants, on surface wettability, surface energy, osteoblast responses and its osseointegration behavior. Four surfaces were studied: as-machined, acid-etched, micro-rough by grit-blasting and the combination grit-blasted surface with acid-etched. The surfaces with increasing roughness show more osteoblastic adhered cells. This effect was most pronounced on samples blasted and blasted with acid-etching. The roughness obtained by grit-blasting is the main factor in comparison with the acid etching treatment in the biological response. These results were confirmed in vivo tests and histological analysis. The results demonstrated that the combination of the grit-blasted and acid-etched accelerated lightly bone regeneration at the different periods of implantation in comparison with the grit-blasted implants.

Keywords

Contact Angle MG63 Cell Dental Implant Apparent Contact Angle Real Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boyan BD, Lohmann CH, Dean DD, Sylvia VL, Cochran DL, Schwartz Z. Mechanisms involved in osteoblast response to implant surface morphology. Annu Rev Mater Res. 2001;31:357–71.CrossRefGoogle Scholar
  2. 2.
    Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.CrossRefGoogle Scholar
  3. 3.
    Vrouwenvelder WCA, Groot CG, Degroot K. Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium-alloy, and stainless-steel. J Biomed Mater Res. 1993;27:465–75.CrossRefGoogle Scholar
  4. 4.
    Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C. 2003;23:551–60.CrossRefGoogle Scholar
  5. 5.
    Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Schwartz Z. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D-3. J Biomed Mater Res. 1998;39:77–85.CrossRefGoogle Scholar
  6. 6.
    Schwartz Z, Martin JY, Dean DD, Simpson J, Cochran DL, Boyan BD. Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res. 1996;30:145–55.CrossRefGoogle Scholar
  7. 7.
    Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 2000;49:155–66.CrossRefGoogle Scholar
  8. 8.
    Richards RG. The effect of surface roughness on fibroblast adhesion in vitro. Injury. 1996;27:38–43.CrossRefGoogle Scholar
  9. 9.
    Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface-roughness on proliferation, differentiation, and protein-synthesis of human osteoblast-like cells (Mg63). J Biomed Mater Res. 1995;29:389–401.CrossRefGoogle Scholar
  10. 10.
    Eisenbarth E, Linez P, Biehl V, Velten D, Breme J, Hildebrand HF. Cell orientation and cytoskeleton organisation on ground titanium surfaces. Biomol Eng. 2002;19:233–7.CrossRefGoogle Scholar
  11. 11.
    Chesmel KD, Clark CC, Brighton CT, Black J. Cellular-responses to chemical and morphologic aspects of biomaterial surfaces. II. The biosynthetic and migratory response of bone cell-populations. J Biomed Mater Res. 1995;29:1101–10.CrossRefGoogle Scholar
  12. 12.
    Bigerelle M, Anselme K. Statistical correlation between cell adhesion and proliferation on biocompatible metallic materials. J Biomed Mater Res A. 2005;72:36–46.CrossRefGoogle Scholar
  13. 13.
    Wieland M, Hanggi P, Hotz W, Textor M, Keller BA, Spencer ND. Wavelength-dependent measurement and evaluation of surface topographies: application of a new concept of window roughness and surface transfer function. Wear. 2000;237:231–52.CrossRefGoogle Scholar
  14. 14.
    Aparicio C, Gil FJ, Planell JA, Engel E. Human-osteoblast proliferation and differentiation on grit-blasted and bioactive titanium for dental applications. J Mater Sci Mater Med. 2002;13:1105–11.CrossRefGoogle Scholar
  15. 15.
    Aparicio C, Gil FJ, Thams U, Munoz F, Padros A, Planell JA. Osseointegration of grit-blasted and bioactive titanium implants: histomorphometry in minipigs. Bioceramics 16. 2004;254-2:737–40.Google Scholar
  16. 16.
    Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991;25:889–902.CrossRefGoogle Scholar
  17. 17.
    Kokubo T, Miyaji F, Kim HM. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Am Ceram Soc. 1996;79(1996):1127–9.CrossRefGoogle Scholar
  18. 18.
    Albrektsson T. Osseointegrated titanium implants. Requirements for ensuring a long-lasting direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52:155–70.CrossRefGoogle Scholar
  19. 19.
    Pegueroles M, Gil FJ, Planell JA, Aparicio C. The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces. Surf Coat Technol. 2008;202:3470–9.CrossRefGoogle Scholar
  20. 20.
    Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28:988–94.CrossRefGoogle Scholar
  21. 21.
    Sheng Y-J, Jiang S, Tsao H-K. Effects of geometrical characteristics of surface roughness on droplet wetting. J Chem Phys. 2007;127(23):234704.CrossRefGoogle Scholar
  22. 22.
    Ström G, Fredericsson M, Stenius P. Contact angles, work of adhesion, and interfacial tension at a dissolving hydrocarbon surface. J Colloid Interface Sci. 1987;119:352–61.CrossRefGoogle Scholar
  23. 23.
    Annarelli CC, Fornazero J, Cohen R, Bert J, Besse JL. Colloidal protein solutions as a new standard sensor for adhesive wettability measurements. J Colloid Interface Sci. 1999;213:386–94.CrossRefGoogle Scholar
  24. 24.
    Morra M, Cassinelli C. Bacterial adhesion to polymer surfaces: a critical review of surface thermodynamic approaches. J Biomater Sci Polym Ed. 1997;9:55–74.CrossRefGoogle Scholar
  25. 25.
    Sharma PK, Rao KH. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv Colloid Interface Sci. 2002;98:341–463.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Herrero-Climent
    • 1
  • P. Lázaro
    • 1
  • J. Vicente Rios
    • 1
  • S. Lluch
    • 2
  • M. Marqués
    • 2
  • J. Guillem-Martí
    • 3
  • F. J. Gil
    • 3
    Email author
  1. 1.Facultad de OdontologíaUniversidad de SevillaSevillaSpain
  2. 2.Toxicologia y Microbiología Ambiental y Sanitaria, Departamento de Optica y OptometríaUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Biomateriales, Biomecànica e Ingeniería de Tejidos, Departamento de Ciencia de Materiales e Ingeniería MetalúrgicaCentre de Recerca Nanoenginyeria, ETSEIB, Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations