Skip to main content
Log in

Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Conventionally sintered hydroxyapatite-based materials for bone repair show poor resorbability due to the loss of nanocrystallinity. The present study describes a method to establish nanocrystalline hydroxyapatite granules. The material was prepared by ionotropic gelation of an alginate sol containing hydroxyapatite (HA) powder. Subsequent thermal elimination of alginate at 650 °C yielded non-sintered, but unexpectedly stable hydroxyapatite granules. By adding stearic acid as an organic filler to the alginate/HA suspension, the granules exhibited macropores after thermal treatment. A third type of material was achieved by additional coating of the granules with silica particles. Microstructure and specific surface area of the different materials were characterized in comparison to the already established granular calcium phosphate material Cerasorb M®. Cytocompatibility and potential for bone regeneration of the materials was evaluated by in vitro examinations with osteosarcoma cells and osteoclasts. Osteoblast-like SaOS-2 cells proliferated on all examined materials and showed the typical increase of alkaline phosphatase (ALP) activity during cultivation. Expression of bone-related genes coding for ALP, osteonectin, osteopontin, osteocalcin and bone sialoprotein II on the materials was proven by RT-PCR. Human monocytes were seeded onto the different granules and osteoclastogenesis was examined by activity measurement of tartrate-specific acid phosphatase (TRAP). Gene expression analysis after 23 days of cultivation revealed an increased expression of osteoclast-related genes TRAP, vitronectin receptor and cathepsin K, which was on the same level for all examined materials. These results indicate, that the nanocrystalline granular materials are of clinical interest, especially for bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002;41:3130–46.

    Article  CAS  Google Scholar 

  2. Schwartzwalder K (1963) Method of making porous ceramic articles. US Patent 3090094.

  3. Schwartz Z, Weesner T, van Dijk S, Cochran DL, Mellonig JT, Lohmann CH, Carnes DL, Goldstein M, Dean DD, Boyan BD. Ability of deproteinized cancellous bovine bone to induce new bone formation. J Periodontol. 2000;71:1258–69.

    Article  CAS  Google Scholar 

  4. Taylor JC, Cuff SE, Leger JP, Morra A, Anderson GI. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study. Int J Oral Maxillofac Implants. 2002;17:321–30.

    Google Scholar 

  5. Bohner M. Calcium phosphate emulsions: possible applications. Key Eng Mater. 2001;192–195:765–8.

    Article  Google Scholar 

  6. Gerike W, Bienengräber V, Henkel KO, Bayerlein T, Proff P, Gedrange T, Gerber T. The manufacture of synthetic non-sintered and degradable bone grafting substitutes. Folia Morphol (Warsz). 2006;65:54–5.

    CAS  Google Scholar 

  7. Bienengräber V, Gerber Th, Trykova T, Kundt G, Henkel KO. A new high porous silica-sol–gel-ceramics for bone grafting—in vivo long-time investigations, Mat.-wiss. u. Werkstofftech. 2004;35:234–239.

  8. Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28:621–30.

    Article  Google Scholar 

  9. Santos E, Zarate J, Orive G, Hernández RM, Pedraz JL. Biomaterials in cell microencapsulation. Adv Exp Med Biol. 2010;670:5–21.

    Article  CAS  Google Scholar 

  10. Ribeiro CC, Barrias CC, Barbosa MA. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. J Mater Sci Mater Med. 2006;17:455–63.

    Article  CAS  Google Scholar 

  11. Mateus AY, Barrias CC, Ribeiro C, Ferraz MP, Monteiro FJ. Comparative study of nanohydroxyapatite microspheres for medical applications. J Biomed Mater Res A. 2008;86:483–93.

    Google Scholar 

  12. Misiek DJ, Kent JN, Carr RF. Soft tissue responses to hydroxylapatite particles of different shapes. J Oral Maxillofac Surg. 1984;42:150–60.

    Article  CAS  Google Scholar 

  13. Douglas T, Liu Q, Humpe A, Wiltfang J, Sivananthan S, Warnke PH. Novel ceramic bone replacement material CeraBall seeded with human mesenchymal stem cells. Clin Oral Implants Res. 2010;21:262–7.

    Article  Google Scholar 

  14. Janckila AJ, Takahashi K, Sun SZ, Yam LT. Naphthol-ASBI phosphate as a preferred substrate for tartrate-resistant acid phosphatase isoform 5b. J Bone Miner Res. 2001;16:788–93.

    Article  CAS  Google Scholar 

  15. Vater C, Lode A, Bernhardt A, Reinstorf A, Heinemann C, Gelinsky M. Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A. 2010;92:1452–60.

    Google Scholar 

  16. Despang F, Dittrich R, Gelinsky M. Novel biomaterials with parallel aligned pore channels by directed ionotropic gelation of alginate: mimicking the anisotropic structure of bone tissue. In: George A, editor. Advances in Biomimetics. Rijeka: InTech; 2011. p. 349–72.

    Google Scholar 

  17. Despang F, Bernhardt A, Lode A, Dittrich R, Hanke T, Shenoy J, Mani S, John A, Gelinsky M. Synthesis, physico-chemical and in vitro/vivo evaluation of an anistropic, nano-crystalline hydroxyapatite bisque scaffold with parallel aligned pores mimicking the microstructure of cortical bone. J Tissue Eng Regen Med. 2013;. doi:10.1002/term.1729.

    Google Scholar 

  18. Detsch R, Mayr H, Ziegler G. Formation of osteoclast-like cells on HA and TCP ceramics. Acta Biomater. 2008;4:139–48.

    Article  CAS  Google Scholar 

  19. Bose S, Dasgupta S, Tarafder S, Bandyopadhyay A. Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater. 2010;6:3782–90.

    Article  CAS  Google Scholar 

  20. Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich EB, Webster TJ. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J Biomed Mater Res A. 2008;84:265–72.

    Google Scholar 

  21. Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006;27:2798–805.

    Article  CAS  Google Scholar 

  22. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001;22:1327–33.

    Article  CAS  Google Scholar 

  23. Christenson EM, Anseth KS, van den Beucken JJ, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li WJ, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos AG. Nanobiomaterial applications in orthopedics. J Orthop Res. 2007;25:11–22.

    Article  CAS  Google Scholar 

  24. dePaula FL, Barreto IC, Rocha-Leão MH, Borojevic R, Rossi AM, Rosa FP, Farina M. Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo. Front Mater Sci China. 2009;3:145–53.

    Google Scholar 

  25. Rossi AL, Barreto IC, Maciel WQ, Rosa FP, Rocha-Leão MH, Werckmann J, Rossi AM, Borojevic R, Farina M. Ultrastructure of regenerated bone mineral surrounding hydroxyapatite-alginate composite and sintered hydroxyapatite. Bone. 2012;50:301–10.

    Article  CAS  Google Scholar 

  26. Bernhardt A, Despang F, Lode A, Demmler A, Hanke T, Gelinsky M. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure. J Tissue Eng Regen Med. 2009;3:54–62.

    Article  CAS  Google Scholar 

  27. Bernhardt A, Lode A, Peters F, Gelinsky M. Comparative evaluation of different calcium phosphate-based bone graft granules—an in vitro study with osteoblast-like cells. Clin Oral Implants Res. 2013;24:441–9.

    Article  Google Scholar 

  28. Horch HH, Sader R, Pautke C, Neff A, Deppe H, Kolk A. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg. 2006;35:708–13.

    Article  Google Scholar 

  29. Nair MB, Bernhardt A, Lode A, Heinemann C, Thieme S, Hanke T, Varma H, Gelinsky M, John A. A bioactive triphasic ceramic-coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A. 2009;90:533–42.

    Google Scholar 

  30. Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 2007;28:4023–32.

    Article  CAS  Google Scholar 

  31. Bohner M. Silicon-substituted calcium phosphates—a critical view. Biomaterials. 2009;30:6403–6.

    Article  CAS  Google Scholar 

  32. Heinemann C, Heinemann S, Worch H, Hanke T. Development of an osteoblast/osteoclast co-culture derived by human bone marrow stromal cells and human monocytes for biomaterials testing. Eur Cell Mater. 2011;21:80–93.

    CAS  Google Scholar 

  33. Lau KH, Onishi T, Wergedal JE, Singer FR, Baylink DJ. Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption. Clin Chem. 1987;33:458–62.

    CAS  Google Scholar 

  34. Detsch R, Hagmeyer D, Neumann M, Schaefer S, Vortkamp A, Wuelling M, Ziegler G, Epple M. The resorption of nanocrystalline calcium phosphates by osteoclast-like cells. Acta Biomater. 2010;6:3223–33.

    Article  CAS  Google Scholar 

  35. Costa-Rodrigues J, Fernandes A, Lopes MA, Fernandes MH. Hydroxyapatite surface roughness: complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomater. 2012;8:1137–45.

    Article  CAS  Google Scholar 

  36. Rumpler M, Würger T, Roschger P, Zwettler E, Peterlik H, Fratzl P, Klaushofer K. Microcracks and osteoclast resorption activity in vitro. Calcif Tissue Int. 2012;90:230–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the excellent technical assistance of Sophie Brüggemeier and Ortrud Zieschang. We acknowledge G. Schneider (Institute of Materials Science, TU Bergakademie, Freiberg, Germany) for XRD measurements. We thank A. Voß and A. Voidel (Leibnitz Institute for Solid State and Materials Research Dresden) for ICP-OES measurements and evaluation of the data. We are grateful to Curasan AG (Kleinostheim, Germany) for generous supply of Cerasorb M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bernhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhardt, A., Dittrich, R., Lode, A. et al. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts. J Mater Sci: Mater Med 24, 1755–1766 (2013). https://doi.org/10.1007/s10856-013-4933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4933-2

Keywords

Navigation