Premixed injectable calcium phosphate cement with excellent suspension stability

Article

Abstract

Premixed injectable calcium phosphate cement (p-ICPC) pastes have advantages over aqueous injectable calcium phosphate cement (a-ICPC) because p-ICPC remain stable during storage and harden only after placement into the defect. This paper focused on the suspension stability of p-ICPC paste by using fumed silica as a stabilizing agent and propylene glycol (PEG) as a continuous phase. Multiple light scanning techniques were first applied to evaluate the suspension stability. The results indicated that fumed silica effectively enhanced the suspension stability of p-ICPC pastes. The stabilizing effect of fumed silica results from the network structure formed in PEG because of its thixotropy. The p-ICPC could be eventually hydrated to form hydroxyapatite under aqueous circumstances by the unique replacement between water and PEG. p-ICPC (1) not only possesses proper thixotropy and compressive strength but has good injectability as well. p-ICPC (1) was cytocompatible and had no adverse effect on the attachment and proliferation of MG-63 cells in vitro. These observations may have applicability to the development of other nonaqueous injectable biomaterials for non-immediate filling and long-term storage.

References

  1. 1.
    Ambrosio L, Guarino V, Sanginario V, Torricelli P, Fini M, Ginebra MP, et al. Injectable calcium–phosphate-based composites for skeletal bone treatments, Biomedical Mater. (2012);7. doi: 10.1088/1748-6041/7/2/024113.
  2. 2.
    Friedman CD, Costantino PD, Takagi S, Chow LC. BoneSource™ hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res: Appl Biomater. 1998;43:428–32.CrossRefGoogle Scholar
  3. 3.
    Chow LC. Calcium phosphate cements: chemistry, properties, and applications. Mater Res Symp Proc. 2000;599:27–37.CrossRefGoogle Scholar
  4. 4.
    Xu HHK, Careya LE, Takagi S, Chow LC. Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity. Dent Mater. 2007;23:433–41.CrossRefGoogle Scholar
  5. 5.
    Takagi S, Chow LC, Hirayama S, Sugawara A. Premixed calcium phosphate cement pastes. J Biomed Mater Res. 2003;67B:689–96.CrossRefGoogle Scholar
  6. 6.
    Wei J, Li YB. Injectable premixed cement of nanoapatite and polyamide composite. High Technol Lett. 2002;2:18–22.Google Scholar
  7. 7.
    Uwe G, Sofia D, Roger T, Jake EB. Factors influencing calcium phosphate cement shelf-life. Biomaterials. 2005;26:3691–7.CrossRefGoogle Scholar
  8. 8.
    Chow LC, Hirayanma S, Takagi S, Parry E. Diametral tensile strength and compressive strength of a calcium phosphate cement: effect of applied pressure. J Biomed Mater Res: Appl Biomater. 2000;53:511–7.CrossRefGoogle Scholar
  9. 9.
    Lisa E, Xu HHK, Careya CG, Simon J, Takagia S, Chow LC. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials. 2005;26:5002–14.CrossRefGoogle Scholar
  10. 10.
    Trammer B, Amann A, Haltner-Ukomadu E, Tillmanns S, Keller M, Hogger P. Comparative permeability and diffusion kinetics of cyclosporine a liposomes and propylene glycol solution from human lung tissue into human blood ex vivo. Euro J Pharm Biopharm. 2008;70:758–64.CrossRefGoogle Scholar
  11. 11.
    Fine A, Patterson J. Severe hyperphosphatemia following phosphate administration for bowel preparation in patients with renal failure: two cases and a review of the literature. Am J Kidney Dis. 1997;29:103–5.CrossRefGoogle Scholar
  12. 12.
    Harris J. Introduction to biotechnical and biomedical applications of poly (ethylene glycol). New York: Chemistry Plenum Press; 1992.Google Scholar
  13. 13.
    Xu HHK, Takagi S, Quinn J, Chow LC. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res. 2004;68A:725–34.CrossRefGoogle Scholar
  14. 14.
    Briak HE, Durand D, Nurit J, Munier S, Pauvert B, Boudeville P. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. J Biomed Mater Res. 2002;63:447–53.CrossRefGoogle Scholar
  15. 15.
    Ettlinger M, Ladwig T, Weise A. Surface modified fumed silicas for modern coatings. Prog Org Coat. 2000;40:31–4.CrossRefGoogle Scholar
  16. 16.
    Chung SJ, Leonard JP, Nettleship I, Lee JK, Soong Y, Martello DV. Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol. 2009;194:75–80.CrossRefGoogle Scholar
  17. 17.
    Ciftci D, Kahyaoglu T, Kapucu S, Kaya S. Colloidal stability and rheological properties of sesame paste. J Food Eng. 2008;87:428–35.CrossRefGoogle Scholar
  18. 18.
    Hugo Leonardo RA, Luis AS, Carlos PB. Injectability evaluation of tricalcium phosphate bone cement. J Mater Sci Mater Med. 2008;19:2241–6.CrossRefGoogle Scholar
  19. 19.
    Burguera EF, Xu HHK, Sun L. Injectable calcium phosphate cement: effects of powder-to-liquid ratio and needle size. J Biomed Mater Res. 2008;84B:493–502.CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.CrossRefGoogle Scholar
  22. 22.
    Rankin PJ, Horvath AT, Klingenberg DJ. Magnetorheology in viscoplastic media. Rheol Acta. 1999;38:471–7.CrossRefGoogle Scholar
  23. 23.
    Chen FP, Liu CS, Wei J, Mao YH. Preparation and characterization of injectable calcium phosphate cement paste modified by polyethylene glycol-6000. Material Chemical and Physic. 2011;125:818–24.CrossRefGoogle Scholar
  24. 24.
    Bossis G, Volkova O, Lacis S, Meunier A. In: Odenbach S (Ed.) Ferrofluids, Chap. 11. Berlin: Springer; 2002.Google Scholar
  25. 25.
    de Vicente J, Lopez–Lopez MT, Gonzalez-Caballero F, Duran JDG. Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles. J Rheol. 2003;47:1093–109.CrossRefGoogle Scholar
  26. 26.
    Volkova O, Bossis G, Guyot M, Bashtovoi V, Reks A. Magnetorheology of magnetic holes compared to magnetic particles. J Rheol. 2000;44:91–104.CrossRefGoogle Scholar
  27. 27.
    Asai H, Masuda A, Kawaguchi M. Rheological properties of colloidal gels formed from fumed silica suspensions in the presence of cationic surfactants. J Colloid Interface Sci. 2008;328:180–5.CrossRefGoogle Scholar
  28. 28.
    Wang XP, Chen L, Xiang H, Ye JD. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res. 2007;81B:410–8.CrossRefGoogle Scholar
  29. 29.
    Mewis J, Wagner NJ. Thixotropy. Adv Colloid Interface Sci. 2008;147:214–27.Google Scholar
  30. 30.
    Liu CS, Shao HF, Chen FY, Zheng HY. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials. 2006;27:5003–13.CrossRefGoogle Scholar
  31. 31.
    Joao B, Neto R, Moreno R. Effect of mechanical activation on the rheology and casting performance of kaolin/talcalumina suspensions for manufacturing dense cordierite bodies. Appl Clay Sci. 2008;38:209–18.CrossRefGoogle Scholar
  32. 32.
    Qi XP, Ye JD, Wang YJ. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres. Acta Biomater. 2008;4:1837–45.CrossRefGoogle Scholar
  33. 33.
    Leroux L, Hatim Z, Freche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone. 1999;25:31S–4S.CrossRefGoogle Scholar
  34. 34.
    Chen FP, Mao YH, Liu CS. Bismuth-doped injectable calcium phosphate cement with improved radiopacity and potent antimicrobial activity for root canal filling. Acta Biomater. 2010;6:3199–207.CrossRefGoogle Scholar
  35. 35.
    Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.CrossRefGoogle Scholar
  36. 36.
    Mengual O, Meunier G, Cayre I, Puech K, Snabre P. Characterisation of instability of concentrated dispersions by a new optical analyser: the Turbiscan MA 1000 Colloids Surf. A: Physicochem. Eng. Aspects. 1999;152:111–23.CrossRefGoogle Scholar
  37. 37.
    Kim HS, Park WI, Kang M, Jin HJ. Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. J Phys Chem Solid. 2009;69:1209–12.CrossRefGoogle Scholar
  38. 38.
    Raghavan S, Walls HJ, Khan SA. Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir. 2000;16:7920–30.CrossRefGoogle Scholar
  39. 39.
    Kawaguchi M, Yamamoto T, Kato T. Rheological properties of silica suspensions in aqueous solutions of block copolymers and their water-soluble components. J Colloid Interface Sci. 2001;241:293–5.CrossRefGoogle Scholar
  40. 40.
    Onuma K. Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms. Progr Cryst Growth Char Mater. 2006;52:223–45.CrossRefGoogle Scholar
  41. 41.
    Knabe C, Berger G, Gildenhaar R, Meyer J. Howlett CR, Markovic B, Effect of rapidly resorbable calcium phosphates and a calcium phosphate bone cement on the expression of bone-related genes and proteins in vitro. J Biomed Mater Res. 2004;69A:145–54.CrossRefGoogle Scholar
  42. 42.
    Ehara A, Ogata K, Imazato S, Ebisu S, Nakano T, Umakoshi Y. Effects of alpha-TCP and TetCP on MC3T3-E1 proliferation, differentiation and mineralization. Biomaterials. 2003;24:831–6.CrossRefGoogle Scholar
  43. 43.
    Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Momota Y, Tatehara S. Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials. 2004;25:1159–66.CrossRefGoogle Scholar
  44. 44.
    Jia H, Hou W, Wei L, Xu B, Liu X. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Dent Mater. 2008;24:244–9.CrossRefGoogle Scholar
  45. 45.
    Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Delivery Rev. 2008;60:1278–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.The State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  3. 3.Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations