Diamond as a scaffold for bone growth

  • Kate Fox
  • Joseph Palamara
  • Roy Judge
  • Andrew D. Greentree


Diamond is an attractive material for biomedical implants. In this work, we investigate its capacity as a bone scaffold. It is well established that the bioactivity of a material can be evaluated by examining its capacity to form apatite-like calcium phosphate phases on its surface when exposed to simulated body fluid. Accordingly, polycrystalline diamond (PCD) and ultrananocrystalline diamond (UNCD) deposited by microwave plasma chemical vapour deposition were exposed to simulated body fluid and assessed for apatite growth when compared to the bulk silicon. Scanning electron microscopy and X-ray photoelectron spectroscopy showed that both UNCD and PCD are capable of acting as a bone scaffold. The composition of deposited apatite suggests that UNCD and PCD are suitable for in vivo implantation with UNCD possible favoured in applications where rapid osseointegration is essential.


Apatite Simulated Body Fluid Polycrystalline Diamond Simulated Body Fluid Solution Apatite Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A.D.G. acknowledges the Australian Research Council for financial support (Project No. DP0880466). This work was supported by the University of Melbourne Interdisciplinary Seed Funding scheme. K.F. is financially supported by the Australian Research Council (ARC) through its Special Research Initiative (SRI) in Bionic Vision Science and Technology grant to Bionic Vision Australia (BVA) and by the University of Melbourne Research Collaboration Grant scheme. K.F acknowledges the support of Surgical Design and Manufacture Ltd and Prof. Steven Prawer. The authors wish to acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the RMIT Microscopy & Microanalysis Facility, at RMIT University and Dr Jiri Cervenka for FIB-SEM assistance.


  1. 1.
    Baker K, Anderson M, Oehlke S, Astashkina A, Haikio D, Drelich J, et al. Growth, characterization and biocompatibility of bone-like calcium phosphate layers biomimetically deposited on metallic substratate. Mater Sci Eng, C. 2006;26(8):1351–60.CrossRefGoogle Scholar
  2. 2.
    Stigter M, Bezemer J, de Groot K, Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Controlled Release. 2004;99(1):127–37. doi: 10.1016/j.jconrel.2004.06.011.CrossRefGoogle Scholar
  3. 3.
    Choi JM, Kim HE, Lee IS. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials. 2000;21(5):469–73.CrossRefGoogle Scholar
  4. 4.
    Knabe C, Berger G, Gildenhaar R, Klar F, Zreiqat H. The modulation of osteogenesis in vitro by calcium titanium phosphate coatings Biomaterials. 2004;25(20):4911–9.Google Scholar
  5. 5.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24(6):721–34.CrossRefGoogle Scholar
  6. 6.
    Coathup M, Blackburn J, Goodship A, Cunningham J, Smith T, Blunn G. Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components. Biomaterials. 2005;26(19):4161–9.CrossRefGoogle Scholar
  7. 7.
    Sun LM, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J Biomed Mater Res. 2001;58(5):570–92. doi: 10.1002/jbm.1056.CrossRefGoogle Scholar
  8. 8.
    Sun LM, Berndt CC, Khor KA, Cheang HN, Gross KA. Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J Biomed Mater Res. 2002;62(2):228–36. doi: 10.1002/jbm.10315.CrossRefGoogle Scholar
  9. 9.
    Cheang P, Khor KA. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials. 1996;17(5):537–44. doi: 10.1016/0142-9612(96)82729-3.CrossRefGoogle Scholar
  10. 10.
    Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: A review. J Controlled Release. 2006;113(2):102–10. doi: 10.1016/j.jconrel.2006.04.007.CrossRefGoogle Scholar
  11. 11.
    Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison with natural bone. Biomaterials. 2004;25(6):987–94.CrossRefGoogle Scholar
  12. 12.
    Venkatesan P, Puvvada N, Dash R, Kumar BNP, Sarkar D, Azab B, et al. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials. 2011;32(15):3794–806. doi: 10.1016/j.biomaterials.2011.01.027.CrossRefGoogle Scholar
  13. 13.
    Uskoković V, Uskoković D. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater. 2011;96B:152–91.CrossRefGoogle Scholar
  14. 14.
    Nath S, Basu B. Materials for orthopedic applications. In: Basu B, Katti D, Kumar A, editors. Advanced Biomaterials: Fundamentals, processing and applications. Hoboken: Wiley; 2009.Google Scholar
  15. 15.
    Klein C, Groot Kd. Implant systems based on bioactive ceramics. In: Heimke G, editor. Osseo-integrated implants: Implants in oral and ENT surgery. Boca Raton: CRC Press; 1990. p. 193–208.Google Scholar
  16. 16.
    Yoshinari M, Klinge B, Derand T. The biocompatibility (cell culture and histologic study) of hydroxyl-apatite-coated implants created by ion beam dynamic mixing. Clin Oral Implant Res. 1996;7:96–100.CrossRefGoogle Scholar
  17. 17.
    Cook S, Thomas K, Brinker M. Bioactive ceramic coatings for orthopaedic and dental implant applications. Blood compatible materials and devices: Perspectives towards the 21st century. Lancaster: Technomic publishing company; 1991.Google Scholar
  18. 18.
    Coathup MJ, Blunn GW, Flynn N, Williams C, Thomas NP. A comparison of bone remodelling around hydroxyapatite-coated, porous-coated and grit-blasted hip replacements retrieved at post-mortem. Journal of Bone and Joint Surgery-British Volume. 2001;83B(1):118–23. doi: 10.1302/0301-620x.83b1.10062.CrossRefGoogle Scholar
  19. 19.
    Sousa SR, Barbosa MA. Effect of hydroxyapatite thickness on metal ion release from Ti6Al4 V substrates. Biomaterials. 1996;17(4):397–404. doi: 10.1016/0142-9612(96)89655-4.CrossRefGoogle Scholar
  20. 20.
    Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution Biomaterials. 2009;30:2175–9.Google Scholar
  21. 21.
    Combes C, Rey C. Adsorption of proteins and calcium phosphate materials bioactivity. Biomaterials. 2002;23:2817–23.CrossRefGoogle Scholar
  22. 22.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.CrossRefGoogle Scholar
  23. 23.
    Liu X, Fu RKY, Poon RWY, Chen P, Chu PK, Ding C. Biomimetic growth of apatite on hydrogen-implanted silicon. Biomaterials. 2004;25(25):5575–81. doi: 10.1016/j.biomaterials.2004.01.015.CrossRefGoogle Scholar
  24. 24.
    Jaatinen J, Korhonen R, Pelttari A, Helminen H, Korhonen H, Lappalainen R, et al. Early bone growth on the surface of titanium implants in rat femur is enhanced by an amorphous diamond coating. Acta Orthop. 2011;82(4):499–503.CrossRefGoogle Scholar
  25. 25.
    Papo MJ, Catledge SA, Vohra YK. Mechanical wear behavior of nanocrystalline and multilayered diamond coatings on temporomandibular joint implants. J Mat Sci-Mat In Medicine. 2004;15:773.CrossRefGoogle Scholar
  26. 26.
    Fries M, Vohra Y. Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant. J Phys D Appl Phys. 2002;35(20):L105–7.CrossRefGoogle Scholar
  27. 27.
    Guglielmotti MB, Renou S, Cabrini RL. A histomorphometric study of tissue interface by laminar implant test in rats. Int J Oral Maxillofac Implants. 1999;14(4):565–70.Google Scholar
  28. 28.
    Booth L, Catledge S, Nolen D, Thompson R, Vohra Y. Synthesis and characterization of multilayered diamond coatings for biomedical implants. Materials. 2011;4:857–68.CrossRefGoogle Scholar
  29. 29.
    Jozwik K, Karczemska A. The new generation Ti6Al4 V artificial heart valve with nanocrystalline diamond coating on the ring and with Derlin disc after long-term mechanical fatigue examination. Diam Relat Mater. 2007;16:1004.CrossRefGoogle Scholar
  30. 30.
    Aspenberg P, Anttila A, Konttinen YT, Lappalainen R, Goodman SB, Nordsletten L, et al. Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. Biomaterials. 1996;17(8):807–12. doi: 10.1016/0142-9612(96)81418-9.CrossRefGoogle Scholar
  31. 31.
    Mattei L, Di Puccio F, Piccigallo B, Ciulli E. Lubrication and wear modelling of artificial hip joints: A review. Tribol Int. 2011;44(5):532–49. doi: 10.1016/j.triboint.2010.06.010.CrossRefGoogle Scholar
  32. 32.
    Saikko V, Ahlroos T, Calonius O, Keränen J. Wear simulation of total hip prostheses with polyethylene against CoCr, alumina and diamond-like carbon. Biomaterials. 2001;22(12):1507–14. doi: 10.1016/s0142-9612(00)00306-9.CrossRefGoogle Scholar
  33. 33.
    Garrett DJ, Ganesan K, Stacey A, Fox K, Meffin H, Prawer S. Ultra-nanocrystalline diamond electrodes: Optimisation for neural Stimulation. J Neural Eng. 2012;9(1):10.CrossRefGoogle Scholar
  34. 34.
    Aharonovich I, Castelletto S. Simpson D A, Su C-H, Greentree A D, S P. Diamond-based single-photon emitters. Rep Prog Phys. 2011;74(7):076501.CrossRefGoogle Scholar
  35. 35.
    Popov C, Kulisch W, Jelinek M, Bock A, Strnad J. Nanocrystalline diamond/amorphous carbon composite films for applications in tribology, optics and biomedicine. Thin Solid Films. 2006;494(1–2):92–7. doi: 10.1016/j.tsf.2005.07.163.CrossRefGoogle Scholar
  36. 36.
    Popov C, Kulisch W, Reithmaier JP, Dostalova T, Jelinek M, Anspach N, et al. Bioproperties of nanocrystalline diamond/amorphous carbon composite films. Diam Relat Mater. 2007;16(4–7):735–9. doi: 10.1016/j.diamond.2006.12.001.CrossRefGoogle Scholar
  37. 37.
    Barrere F, van Blitterswijk CA, de Groot K, Layrolle P. Influence of ionic strength and carbonate on the Ca–P coating formation from SBF × 5 solution. Biomaterials. 2002;23(9):1921–30. doi: 10.1016/s0142-9612(01)00318-0.CrossRefGoogle Scholar
  38. 38.
    Faig-Martia J, Gil-Murb FJ. Hydroxyapatite coatings in prosthetic joints. Rev Esp Cir Ortop Traumatol. 2008;52:113–20.Google Scholar
  39. 39.
    Kulisch W, Popov C, Gilliland D, Ceccone G, Reithmaier JP, Rossi F. UNCD/a-C nanocomposite films for biotechnological applications. Surf Coat Technol. 2011;206(4):667–75. doi: 10.1016/j.surfcoat.2011.03.057.CrossRefGoogle Scholar
  40. 40.
    McLeod K, Kumar S, Dutta NK, Smart RS, Voelcker NH, Anderson GI. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings. Appl Surf Sci. 2010;256(23):7178–85. doi: 10.1016/j.apsusc.2010.05.047.CrossRefGoogle Scholar
  41. 41.
    Chosa N, Taira M, Saitoh S, Sato N, Araki Y. Characterization of apatite formed on alkaline-heat-treated Ti. J Dent Res. 2004;83(6):465–9.CrossRefGoogle Scholar
  42. 42.
    Ben-Nissan B, Chai CS, Gross KA. Effect of solution ageing on sol-gel hydroxyapatite coatings. Bioceramics, Vol 10. 1997.Google Scholar
  43. 43.
    Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13(1):94–117.CrossRefGoogle Scholar
  44. 44.
    Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465–85.CrossRefGoogle Scholar
  45. 45.
    Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties Biomaterials. 2003;24:2161–75.Google Scholar
  46. 46.
    Kokubo T, Ito S, Shigematsu M, Sakka S. JMS-. Fatigue and lifetime of bioactive glass-ceramic A-W containing apatite and wollastonite. J Mater Sci. 1987;22:4067–70.CrossRefGoogle Scholar
  47. 47.
    Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials. 2005;26(10):1097–108. doi: 10.1016/j.biomaterials.2004.05.034.CrossRefGoogle Scholar
  48. 48.
    Peng P, Kumar S, Voelcker NH, Szili E. St.C, Griesser H. Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. J Biomed Mater Res. 2006;76A(2):347–55.CrossRefGoogle Scholar
  49. 49.
    Tanahashi M, Matsuda T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res. 1997;34(3):305–15.CrossRefGoogle Scholar
  50. 50.
    LeGeros RZ. Fundamentals of hydroxyapatite and related calcium phosphates. In: Basu B, Katti D, Kumar A, editors. Advanced Biomaterials: Fundamentals, processing and applications. Hoboken: Wiley; 2009.Google Scholar
  51. 51.
    Brown WE, Smith JP, Frazier AW, Lehr JR. Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature. 1962;196(4859):1050. doi: 10.1038/1961050a0.CrossRefGoogle Scholar
  52. 52.
    Chou Y-F, Chiou W-A, Xu Y, Dunn JCY, Wu BM. The effect of pH on the structural evolution of accelerated biomimetic apatite. Biomaterials. 2004;25(22):5323–31. doi: 10.1016/j.biomaterials.2003.12.037.CrossRefGoogle Scholar
  53. 53.
    Amin M, Randeniya L, Bendavid A, Martin P. E. P. Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide. Diam Relat Mater. 2009;18:1139–44.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kate Fox
    • 1
  • Joseph Palamara
    • 2
  • Roy Judge
    • 2
  • Andrew D. Greentree
    • 1
    • 3
  1. 1.School of Physics, University of MelbourneMelbourneAustralia
  2. 2.Melbourne Dental School, University of MelbourneMelbourneAustralia
  3. 3.Department of Applied Physics, School of Applied Sciences, RMIT UniversityMelbourneAustralia

Personalised recommendations