Dual setting α-tricalcium phosphate cements

  • T. Christel
  • M. Kuhlmann
  • E. Vorndran
  • J. Groll
  • U. Gbureck


An extension of the application of calcium phosphate cements (CPC) to load-bearing defects, e.g. in vertebroplasty, would require less brittle cements with an increased fracture toughness. Here we report the modification of CPC made of alpha-tricalcium phosphate (α-TCP) with 2-hydroxyethylmethacrylate (HEMA), which is polymerised during setting to obtain a mechanically stable polymer-ceramic composite with interpenetrating organic and inorganic networks. The cement liquid was modified by the addition of 30–70 % HEMA and ammoniumpersulfate/tetramethylethylendiamine as initiator. Modification of α-TCP cement paste with HEMA decreased the setting time from 14 min to 3–8 min depending on the initiator concentration. The 4-point bending strength was increased from 9 MPa to more than 14 MPa when using 50 % HEMA, while the bending modulus decreased from 18 GPa to approx. 4 GPa. The addition of ≥50 % HEMA reduced the brittle fracture behaviour of the cements and resulted in an increase of the work of fracture by more than an order of magnitude. X-ray diffraction analyses revealed that the degree of transformation of α-TCP to calcium deficient hydroxyapatite was lower for polymer modified cements (82 % for polymer free cement and 55 % for 70 % HEMA) after 24 h setting, while the polymerisation of HEMA in the cement liquid was quantitative according to FT-IR spectroscopy. This work demonstrated the feasibility of producing fracture resistant dual-setting calcium phosphate cements by adding water soluble polymerisable monomers to the liquid cement phase, which may be suitable for an application in load-bearing bone defects.


  1. 1.
    Breusch SJ, Kuhn KD. Bone cements based on polymethylmethacrylate. Orthopäde. 2003;32(1):41–50.CrossRefGoogle Scholar
  2. 2.
    Dorozhkin SV. Calcium orthophosphate cements for biomedical application. J Mater Sci. 2008;43(9):3028–57.CrossRefGoogle Scholar
  3. 3.
    Jaeblon T. Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg. 2010;18(5):297–305.Google Scholar
  4. 4.
    Heini PF. Vertebroplastie: ein update. Orthopäde. 2010;39(7):658–64.CrossRefGoogle Scholar
  5. 5.
    Stanczyk M, van Rietbergen B. Thermal analysis of bone cement polymerisation at the cement-bone interface. J Biomech. 2004;37(12):1803–10.CrossRefGoogle Scholar
  6. 6.
    Bettencourt A, Calado A, Amaral J, Vale FM, Rico JMT, Monteiro J, Lopes A, Pereira L, Castro M. In vitro release studies of methylmethacrylate liberation from acrylic cement powder. Int J Pharm. 2000;197(1):161–8.CrossRefGoogle Scholar
  7. 7.
    Theiss F, Apelt D, Brand BA, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials. 2005;26(21):4383–94.CrossRefGoogle Scholar
  8. 8.
    Bohner M, Gbureck U, Barralet JE. Technological issues for the developement of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26(33):6423–9.CrossRefGoogle Scholar
  9. 9.
    Canal C, Ginebra MP. Fibre-reinforced calcium phosphate cements: a review. J Mech Behav Biomed. 2011;4(8):1658–71.CrossRefGoogle Scholar
  10. 10.
    Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R. Addition of cohesion promoters to calcium phosphate cements. Biomaterials. 1999;20(4):393–8.CrossRefGoogle Scholar
  11. 11.
    Alkhraisat MH, Rueda C, Marino FT, Torres J, Jerez LB, Gbureck U, Cabarcos EL. The effect of hyaluronic acid on brushite cement cohesion. Acta Biomaterialia. 2009;5(8):3150–6.CrossRefGoogle Scholar
  12. 12.
    Moreau JL, Weir MD, Xu HHK. Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties. J Biomed mater Res. 2009;91A(2):605–13.CrossRefGoogle Scholar
  13. 13.
    Schneiders W, Reinstorf A, Biewener A, Serra A, Grass R, Kinscher M, Heineck J, Rehberg S, Zwipp H, Rammelt S. In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia. J Orthop Res. 2009;27(1):15–21.CrossRefGoogle Scholar
  14. 14.
    Tamimi F, Kumarasami B, Doillon C, Gbureck U, Le Nihouannen D, Lopez Cabarcos E, Barralet JE. Brushite–collagen composites for bone regeneration. Acta Biomater. 2008;4(5):1315–21.CrossRefGoogle Scholar
  15. 15.
    dos Santos LA, Carrodeguas RG, Boschi AO, de Arruda ACF. Fiber-enriched double-setting calcium phosphate bone cement. J Biomed Mater Res A. 2003;65A(2):244–50.CrossRefGoogle Scholar
  16. 16.
    dos Santos LA, Carrodeguas RG, Boschi AO, de Arruda ACF. Dual-setting calcium phosphate cement modified with ammonium polyacrylate. Artif Organs. 2003;27(5):412–8.CrossRefGoogle Scholar
  17. 17.
    Wang J, Liu C, Liu Y, Zhang S. Double-network interpenetrating bone cement via in situ hybridization protocol. Adv Funct Mater. 2010;20(22):3997–4011.CrossRefGoogle Scholar
  18. 18.
    Filmon R, Grizon F, Baslé MF, Chappard D. Effects of negatively charged groups (carboxymethyl) on the calcification of poly(2-hydroxyethyl methacrylate). Biomaterials. 2002;23(14):3053–9.CrossRefGoogle Scholar
  19. 19.
    Song J, Malathong V, Bertozzi CR. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J Am Chem Soc. 2005;127(10):3366–72.CrossRefGoogle Scholar
  20. 20.
    ASTM-Standard C266-99: standard test method for time of setting of hydraulic cement paste by Gilmore needles. ASTM International 2002.Google Scholar
  21. 21.
    Zainuddin, Hill DJT, Chirila TV, Whittaker AK, Kemp A. Experimental calcification of HEMA-based hydrogels in the presence of albumin and a comparison to the in vivo calcification. Biomacromolecules 2006;7(6):1758–65.Google Scholar
  22. 22.
    White CJ, Tieppo A, Byrne ME. Controlled drug release from contact lenses: a comprehensive. J Drud Deliv Sci Tec. 2011;21(5):369–84.Google Scholar
  23. 23.
    Montheard JP, Chatzopoulos M, Chappard D. 2-Hydroxyethyl methacrylate (HEMA)—chemical properties and applications in biomesical fields. J Macromol Sci Rev Macromol Chem Phys. 1992;C32(1):1–34.CrossRefGoogle Scholar
  24. 24.
    Gkioni K, Leeuwenburgh SCG, Douglas TEL, Mikos AG, Jansen JA. Mineralisation of hydrogels for bone generation. Tissue Eng B. 2010;16(6):577–85.CrossRefGoogle Scholar
  25. 25.
    Ginebra MP, Fernandez E, Driessens FCM, Planell JA. Modeling the hydrolysis of α-tricalcium phosphate. J Am Ceram Soc. 1999;82(10):2808–12.CrossRefGoogle Scholar
  26. 26.
    Xu HHK, Quinn JB, Takagi S, Chow LC, Eichmiller FC. Strong and macroporous calcium phosphate cement: effects of porosity and fibre reinforcement. J Biomed Mater Res. 2001;57(3):457–66.CrossRefGoogle Scholar
  27. 27.
    Xu HHK, Eichmiller FC, Giuseppetti AA. Reinforcement of a self-setting calcium phosphate cement with different fibres. J Biomed Mater Res. 2000;52(1):107–14.CrossRefGoogle Scholar
  28. 28.
    Gorst NJS, Perrie Y, Gbureck U, Hutton AL, Hofmann MP, Grover LM, Barralet JE. Effects of fibre reinforcement on the mechanical properties of brushite cement. Acta Biomater. 2006;2(1):95–102.CrossRefGoogle Scholar
  29. 29.
    Barralet JE, Gaunt T, Wright AJ, Gibson IR, Knowles JC. Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. J Biomed Mater Res (Appl Biomater). 2002;63(1):1–9.CrossRefGoogle Scholar
  30. 30.
    Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res. 1995;29(12):1537–43.CrossRefGoogle Scholar
  31. 31.
    Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev. 2012;64:1090–110.CrossRefGoogle Scholar
  32. 32.
    Siepmann J, Peppas NA. Mathematical modelling of controlled drug delivery. Adv Drug Deliv Rev. 2001;48(2–3):137–8.Google Scholar
  33. 33.
    Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.CrossRefGoogle Scholar
  34. 34.
    Kumar A, Tyagi P, Singh H, Kumar Y, Lahiri SS. Synthesis and characterization of a porous poly(hydroxyethylmethacrylate-co-ethylene glycol dimethacrylate)-based hydrogel device for the implantable delivery of insulin. J Appl Polym Sci. 2012;126:894–905.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • T. Christel
    • 1
  • M. Kuhlmann
    • 1
  • E. Vorndran
    • 1
  • J. Groll
    • 1
  • U. Gbureck
    • 1
  1. 1.Department for Functional Materials in Medicine and DentistryUniversity of WürzburgWürzburgGermany

Personalised recommendations