Topographical analysis of the femoral components of ex vivo total knee replacements

  • Susan C. Scholes
  • Emma Kennard
  • Rajkumar Gangadharan
  • David Weir
  • Jim Holland
  • David Deehan
  • Thomas J. Joyce


With greater numbers of primary knee replacements now performed in younger patients there is a demand for improved performance. Surface roughness of the femoral component has been proposed as a causative mechanism for premature prosthesis failure. Nineteen retrieved total knee replacements were analysed using a non-contacting profilometer to measure the femoral component surface roughness. The Hood technique was used to analyse the wear and surface damage of the matching ultra-high molecular weight polyethylene (UHMWPE) tibial components. All femoral components were shown to be up to 11× rougher after their time in vivo while 95 % showed a change in skewness, further indicating wear. This increase in roughness occurred relatively soon after implantation (within 1 year) and remained unchanged thereafter. Mostly, this roughness was more apparent on the lateral condyle than the medial. This increased femoral surface roughness likely led to damage of the UHMWPE tibial component and increased Hood scores.


  1. 1.
    National Joint Registry for England and Wales. 8th Annual Report. 2011.Google Scholar
  2. 2.
    Losina E, Thornhill TS, Rome BN, Wright J, Katz JN. The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic. J Bone Joint surg Am. 2012;94(3):201–7.CrossRefGoogle Scholar
  3. 3.
    Losina E, Katz JN. Total knee arthroplasty on the rise in younger patients: are we sure that past performance will guarantee future success? Arthritis Rheum. 2012;64(2):339–41. doi:10.1002/art.33371.CrossRefGoogle Scholar
  4. 4.
    Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87A(7):1487–97. doi:10.2106/jbjs.d.02441.CrossRefGoogle Scholar
  5. 5.
    Lavernia C, Lee DJ, Hernandez VH. The increasing financial burden of knee revision surgery in the United States. Clin Orthop Relat Res. 2006;446:221–6. doi:10.1097/01.blo.0000214424.67453.9a.CrossRefGoogle Scholar
  6. 6.
    Gioe TJ, Killeen KK, Grimm K, Mehle S, Scheltema K. Why are total knee replacements revised? Analysis of early revision in a community knee implant registry. Clin Orthop Relat Res. 2004;428:100–6.CrossRefGoogle Scholar
  7. 7.
    Siddique MS, Rao MC, Deehan DJ, Pinder IM. Role of abrasion of the femoral component in revision knee arthroplasty. J Bone Joint Surg Br. 2003;85B(3):393–8. doi:10.1302/0301-620x.85b3.13041.CrossRefGoogle Scholar
  8. 8.
    Que L, Topoleski LDT, Parks NL. Surface roughness of retrieved CoCrMo alloy femoral components from PCA artificial total knee joints. J Biomed Mater Res. 2000;53(1):111–8. doi:10.1002/(sici)1097-4636(2000)53:1<111:aid-jbm15>;2-y.CrossRefGoogle Scholar
  9. 9.
    Lakdawala A, Todo S, Scott G. The significance of surface changes on retrieved femoral components after total knee replacement. J Bone Joint Surg Br. 2005;87B(6):796–9. doi:10.1302/0301-620x.87b6.15776.Google Scholar
  10. 10.
    Cho CH, Murakami T, Sawae Y. Influence of microscopic surface asperities on the wear of ultra-high molecular weight polyethylene in a knee prosthesis. Proc Inst Mech Eng Part H J Eng Med. 2010;224H(4):515–29 doi:10.1243/09544119jeim690.
  11. 11.
    Burnell CDC, Brandt JM, Petrak MJ, Bourne RB. Posterior condyle surface damage on retrieved femoral knee components. J Arthroplast. 2011;26(8):1460–7. doi:10.1016/j.arth.2011.03.011.CrossRefGoogle Scholar
  12. 12.
    Ohlsson R, Wihlborg A, Westberg H. The accuracy of fast 3D topography measurements. Int J Mach Tools Manuf. 2001;41(13–14):1899–907. doi:10.1016/s0890-6955(01)00054-2.CrossRefGoogle Scholar
  13. 13.
    Blunt L, Jiang XQ. Three dimensional measurement of the surface topography of ceramic and metallic orthopaedic joint prostheses. J Mater Sci Mater Med. 2000;11(4):235–46.CrossRefGoogle Scholar
  14. 14.
    Hood RW, Wright TM, Burstein AH. Retrieval analysis of total knee prostheses: a method and its application to 48 total condylar prostheses. J Biomed Mater Res. 1983;17(5):829–42. doi:10.1002/jbm.820170510.CrossRefGoogle Scholar
  15. 15.
    Kurtz SM. The UHMWPE biomaterials handbook: ultra-high molecular weight polyethylene in total joint replacement and medical devices, vol. 2. Burlington: Academy Press; 2009.Google Scholar
  16. 16.
    Dowson D, Taheri S, Wallbridge NC. The role of counterface imperfections in the wear of polyethylene. Wear. 1987;119(3):277–93. doi:10.1016/0043-1648(87)90036-6.CrossRefGoogle Scholar
  17. 17.
    Fisher J, Firkins P, Reeves EA, Hailey JL, Isaac GH. The influence of scratches to metallic counterfaces on the wear of ultra-high molecular weight polyethylene. Proc Inst Mech Eng Part H J Eng Med. 1995;209(4):263–4. doi:10.1243/pime_proc_1995_209_353_02.CrossRefGoogle Scholar
  18. 18.
    Bowsher JG, Shelton JC. Hip simulator study of the influence of patient activity level on the wear of crosslinked polyethylene under smooth and roughened femoral conditions. Wear. 2001;250:167–79. doi:10.1016/s0043-1648(01)00619-6.CrossRefGoogle Scholar
  19. 19.
    Muratoglu OK, Burroughs BR, Bragdon CR, Christensen S, Lozynsky A, Harris WH. Knee simulator wear of polyethylene tibias articulating against explanted rough femoral components. Clin Orthop Relat Res. 2004;428:108–13. doi:10.1097/01.blo.0000143801.41885.8b.CrossRefGoogle Scholar
  20. 20.
    DesJardins JD, Burnikel B, LaBerge M. UHMWPE wear against roughened oxidized zirconium and CoCr femoral knee components during force-controlled simulation. Wear. 2008;264(3–4):245–56. doi:10.1016/j.wear.2007.03.020.CrossRefGoogle Scholar
  21. 21.
    Collier JP, Sperling DK, Currier JH, Sutula LC, Saum KA, Mayor MB. Impact of gamma sterilization on clinical performance of polyethylene in the knee. J Arthroplast. 1996;11(4):377–89. doi:10.1016/s0883-5403(96)80026-x.CrossRefGoogle Scholar
  22. 22.
    Kennedy FE, Currier JH, Plumet S, Duda JL, Gestwick DP, Collier JP, et al. Contact fatigue failure of ultra-high molecular weight polyethylene bearing components of knee prostheses. J Tribol Trans ASME. 2000;122(1):332–9. doi:10.1115/1.555364.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Susan C. Scholes
    • 1
  • Emma Kennard
    • 1
  • Rajkumar Gangadharan
    • 2
  • David Weir
    • 2
  • Jim Holland
    • 2
  • David Deehan
    • 2
  • Thomas J. Joyce
    • 1
  1. 1.School of Mechanical and Systems EngineeringNewcastle UniversityNewcastle upon TyneEngland, UK
  2. 2.Freeman HospitalNewcastle upon TyneEngland, UK

Personalised recommendations