Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits

  • Mareike LalkEmail author
  • Janin Reifenrath
  • Nina Angrisani
  • Alexandr Bondarenko
  • Jan-Marten Seitz
  • Peter P. Mueller
  • Andrea Meyer-Lindenberg


Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF2 sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 μm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 μm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo μ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The μCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF2 sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF2 sponges turned out to be better biocompatible and promising, biodegradable bone replacements.


Sponge Drill Hole MgF2 Foreign Body Giant Cell Periosteal Bone Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is part of the Collaborative Research Centre 599, which is funded by the German Research Foundation (DFG). Special thanks to Melanie Kielhorn, Diana Strauch and Svenja Pfarr for excellent technical support.


  1. 1.
    Guda T, Walker JA, Pollot BE, Appleford MR, Oh S, Ong JL, Wenke JC. In vivo performance of bilayer hydroxyapatite scaffolds for bone tissue regeneration in the rabbit radius. J Mater Sci Mater Med. 2011;22:647–56.CrossRefGoogle Scholar
  2. 2.
    Henslee AM, Spicer PP, Yoon DM, Nair MB, Meretoja VV, Witherel KE, Jansen JA, Mikos AG, Kasper FK. Biodegradable composite scaffolds incorporating an intramedullary rod and delivering bone morphogenetic protein-2 for stabilization and bone regeneration in segmental long bone defects. Acta Biomater. 2011;7:3627–37.CrossRefGoogle Scholar
  3. 3.
    Kuzyk PRT, Schemitsch EH, Davies JE. A biodegradable scaffold for the treatment of a diaphyseal bone defect of the tibia. J Orthop Res. 2010;28:474–80.Google Scholar
  4. 4.
    Marti RK, van der Werken C. Autogenous bone grafting in the treatment of nonunions. In: Marti R, Kloen P, editors. Concepts and cases in nonunion treatment. Stuttgart: Thieme; 2011. p. 106–15.Google Scholar
  5. 5.
    Gugala Z, Lindsey R, Goglewski S. New approaches in the treatment of critical-size segmental defects in long bones. Macromol Symp. 2007;253:147–61.CrossRefGoogle Scholar
  6. 6.
    Pape HC, Evans A, Kobbe P. Autologous bone graft: properties and techniques. J Orthop Trauma. 2010;24:S36–40.CrossRefGoogle Scholar
  7. 7.
    Donegan DJ, Scolaro J, Matuszewski PE, Mehta S. Staged bone grafting following placement of an antibiotic spacer block for the management of segmental long bone defects. Orthopedics. 2011;34:730–5.Google Scholar
  8. 8.
    Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.CrossRefGoogle Scholar
  9. 9.
    Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet A. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res. 2012;98:97–102.CrossRefGoogle Scholar
  10. 10.
    Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42:S3–15.CrossRefGoogle Scholar
  11. 11.
    Lasanianos NG, Kanakaris NK, Giannoudis PV. Current management of long bone large segmental defects. Orthop Trauma. 2010;24:149–63.CrossRefGoogle Scholar
  12. 12.
    Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010;132:15–30.Google Scholar
  13. 13.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.CrossRefGoogle Scholar
  14. 14.
    Wei J, Jia J, Wu F, Wei S, Zhou H, Zhang H, Shin J, Liu C. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration. Biomaterials. 2010;31:1260–9.CrossRefGoogle Scholar
  15. 15.
    Schneider OD, Mohn D, Fuhrer R, Klein K, Kämpf K, Nuss KMR, Sidler M, Zlinszky K, von Rechenberg B, Stark WJ. Biocompatibility and bone formation of flexible, cotton wool-like plga/calcium phosphate nanocomposites in sheep. Open Orthop J. 2011;5:63–71.CrossRefGoogle Scholar
  16. 16.
    Reig L, Amigo V, Busquets DJ, Calero JA. Development of porous Ti6Al4 V samples by microsphere sintering. J Mater Process Technol. 2012;212:3–7.CrossRefGoogle Scholar
  17. 17.
    Wegener B, Sievers B, Utzschneider S, Müller P, Jansson V, Rößler S, Nies B, Stephani G, Kieback B, Quadbeck P. Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater Sci Eng B. 2011;176:1789–96.CrossRefGoogle Scholar
  18. 18.
    Kim Y-, Anirban JM, Song H-, Seo H-, Lee B-. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds. J Biomater Appl. 2011;25:539–58.CrossRefGoogle Scholar
  19. 19.
    Nguyen TL, Staiger MP, Dias GJ, Woodfield TBF. A novel manufacturing route for fabrication of topologically-ordered porous magnesium scaffolds. Adv Eng Mater. 2011;13:872–81.CrossRefGoogle Scholar
  20. 20.
    Singh R, Dahotre NB. Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med. 2007;18:725–51.CrossRefGoogle Scholar
  21. 21.
    Schultz P, Vautier D, Atallah I, Gentine A, Debry C. Reconstruction of the anterior mandibule using a porous titanium implant: a case report. Rev Laryngol Otol Rhinol. 2008;129:201–5.Google Scholar
  22. 22.
    Voggenreiter G, Leiting S, Brauer H, Leiting P, Majetschak M, Bardenheuer M, Obertacke U. Immuno-inflammatory tissue reaction to stainless-steel and titanium plates used for internal fixation of long bones. Biomaterials. 2003;24:247–54.CrossRefGoogle Scholar
  23. 23.
    Mandalunis P, Ubios A. Experimental renal failure and iron overload: a histomorphometric study in rat tibia. Toxicol Pathol. 2005;33:398–403.CrossRefGoogle Scholar
  24. 24.
    Bach F, Bormann D, Kucharski R, Meyer-Lindenberg A. Magnesium sponges as a bioabsorbable material––attributes and challenges. Int J Mat Res. 2007;98:609–12.CrossRefGoogle Scholar
  25. 25.
    Witte F, Abeln I, Switzer E, Kaese V, Meyer-Lindenberg A, Windhagen H. Evaluation of the skin sensitizing potential of biodegradable magnesium alloys. J Biomed Mater Res A. 2007;86:1041–7.Google Scholar
  26. 26.
    Jo J, Kang B, Shin K, Kim H, Hahn B, Park D, Koh Y. Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility. J Mater Sci Mater Med. 2011;22:2437–47.CrossRefGoogle Scholar
  27. 27.
    Thomann M, Krause C, Angrisani N, Bormann D, Hassel T, Windhagen H, Meyer-Lindenberg A. Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. J Biomed Mater Res A. 2010;93:1609–19.Google Scholar
  28. 28.
    Kraus T, Fischerauer SF, Hänzi AC, Uggowitzer PJ, Löffler JF, Weinberg AM. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 2012;8:1230–8.CrossRefGoogle Scholar
  29. 29.
    Reifenrath J, Bormann D, Meyer-Lindenberg A. Magnesium alloys as promising degradable implant materials in orthopaedic research. In: Czerwinski F, editor. Magnesium alloys as promising degradable implant materials in orthopaedic research. Ukraine: InTech Publisher; 2011. p. 93–108.Google Scholar
  30. 30.
    Wang H, Guan S, Wang Y, Liu H, Wang H, Wang L, Ren C, Zhu S, Chen K. In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application. Colloids Surf B Biointerfaces. 2011;88:254–9.CrossRefGoogle Scholar
  31. 31.
    Witte F, Reifenrath J, Müller PP, Crostack HA, Nellesen J, Bach F, Bormann D, Rudert M. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Materialwiss Werkst. 2006;37:504–8.CrossRefGoogle Scholar
  32. 32.
    Huehnerschulte TA, Angrisani N, Rittershaus D, Bormann D, Windhagen H, Meyer-Lindenberg A. In vivo corrosion of two novel magnesium alloys ZEK100 and AX30 and their mechanical suitability as biodegradable implants. Materials. 2011;4:1144–67.CrossRefGoogle Scholar
  33. 33.
    Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, Donath T, Beckmann F. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater. 2010;6:1792–9.CrossRefGoogle Scholar
  34. 34.
    Lalk M, Reifenrath J, Rittershaus D, Bormann D, Meyer-Lindenberg A. Biocompatibility and degradation behaviour of degradable magnesium sponges coated with bioglass––method establishment within the framework of a pilot study. Materialwiss Werkst. 2010;41:1025–34.CrossRefGoogle Scholar
  35. 35.
    Chiu K, Wong M, Cheng F, Man H. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf Coat Technol. 2007;202:590–8.CrossRefGoogle Scholar
  36. 36.
    Susheela AK, Jha M. Cellular and histochemical characteristics of osteoid formed in experimental fluoride poisoning. Toxicol Lett. 1983;16:35–40.CrossRefGoogle Scholar
  37. 37.
    McCormack AP, Anderson PA, Tencer AF. Effect of controlled local release of sodium fluoride on bone formation: filling a defect in the proximal femoral cortex. J Orthop Res. 1993;11:548–55.CrossRefGoogle Scholar
  38. 38.
    Mousny M, Omelon S, Wise L, Everett ET, Dumitriu M, Holmyard DP, Banse X, Devogelaer JP, Grynpas MD. Fluoride effects on bone formation and mineralization are influenced by genetics. Bone. 2008;43:1067–74.CrossRefGoogle Scholar
  39. 39.
    Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30:1512–23.CrossRefGoogle Scholar
  40. 40.
    Seitz J, Collier K, Wulf E, Bormann D, Bach F. Comparison of the corrosion behavior of coated and uncoated magnesium alloys in an in vitro corrosion environment. Adv Eng Mater. 2011;13:B313–23.CrossRefGoogle Scholar
  41. 41.
    Hampp C, Ullmann B, Reifenrath J, Angrisani N, Dziuba D, Bormann D, Seitz J, Meyer-Lindenberg A. Research on the biocompatibility of the new magnesium alloy LANd442––an in vivo study in the rabbit tibia over 26 weeks. Adv Eng Mater. 2012;14:B28–37.CrossRefGoogle Scholar
  42. 42.
    Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. J Oral Pathol. 1982;11:318–26.CrossRefGoogle Scholar
  43. 43.
    Huehnerschulte TA, Reifenrath J, von Rechenberg B, Dziuba D, Seitz JM, Bormann D, Windhagen H, Meyer-Lindenberg A. In vivo assessment of the host reactions to the biodegradation of the two novel magnesium alloys ZEK100 and AX30 in an animal model. Biomed Eng Online. 2012;11:14–42.CrossRefGoogle Scholar
  44. 44.
    Janning C, Willbold E, Vogt C, Nellesen J, Meyer-Lindenberg A, Windhagen H, Thorey F, Witte F. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodeling. Acta Biomater. 2010;6:1861–8.CrossRefGoogle Scholar
  45. 45.
    Jansen JA, Dhert WJ, van der Waerden JP, von Recum AF. Semi-quantitative and qualitative histologic analysis method for the evaluation of implant biocompatibility. J Invest Surg. 1994;7:123–34.CrossRefGoogle Scholar
  46. 46.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2:595–610.CrossRefGoogle Scholar
  47. 47.
    Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, Meyer-Lindenberg A. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomater. 2011;7:1421–8.CrossRefGoogle Scholar
  48. 48.
    Remennik S, Bartsch I, Willbold E, Witte F, Shechtman D. New, fast corroding high ductility Mg–Bi–Ca and Mg–Bi–Si alloys, with no clinically observable gas formation in bone implants. Mater Sci Eng B. 2011;176:1653–9.CrossRefGoogle Scholar
  49. 49.
    von der Höh N, Bormann D, Lucas A, Denkena B, Hackenbroich C, Meyer-Lindenberg A. Influence of different surface machining treatments of magnesium-based resorbable implants on the degradation behavior in rabbits. Adv Eng Mater. 2009;11:B47–54.CrossRefGoogle Scholar
  50. 50.
    Nuss KMR, von Rechenberg B. Biocompatibility issues with modern implants in bone-A review for clinical orthopedics. Open Orthop J. 2008;2:66–78.CrossRefGoogle Scholar
  51. 51.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2007;20:86–100.CrossRefGoogle Scholar
  52. 52.
    Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G, Martin I, Marcacci M. Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord. 2010;11:220.CrossRefGoogle Scholar
  53. 53.
    Ekholm E, Tommila M, Forsback A, Märtson M, Holmbom J, Aäritalo V, Finnberg C, Kuusilehto A, Salonen J, Yli-Urpo A, Penttinen R. Hydroxyapatite coating of cellulose sponge does not improve its osteogenic potency in rat bone. Acta Biomater. 2005;1:535–44.CrossRefGoogle Scholar
  54. 54.
    Fontana F, Rocchietta I, Addis A, Schupbach P, Zanotti G, Simion M. Effects of a calcium phosphate coating on the osseointegration of endosseous implants in a rabbit model. Clin Oral Implants Res. 2011;22:760–6.CrossRefGoogle Scholar
  55. 55.
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.CrossRefGoogle Scholar
  56. 56.
    Raina V. Normal osteoid tissue. J Clin Pathol. 1972;25:229–32.CrossRefGoogle Scholar
  57. 57.
    Gerber T, Holzhüter G, Götz W, Bienengräber V, Henkel K, Rumpel E. Nanostructuring of biomaterials––a pathway to bone grafting substitute. Eur J Trauma. 2006;32:132–40.CrossRefGoogle Scholar
  58. 58.
    Chavassieux P, Boivin G, Serre CM, Meunier PJ. Fluoride increases rat osteoblast function and population after in vivo administration but not after in vitro exposure. Bone. 1993;14:721–5.CrossRefGoogle Scholar
  59. 59.
    Waddington RJ, Langley MS. Structural analysis of proteoglycans synthesized by mineralizing bone cells in vitro in the presence of fluoride. Matrix Biol. 1998;17:255–68.CrossRefGoogle Scholar
  60. 60.
    Waddington RJ, Langley MS. Altered expression of matrix metalloproteinases within mineralizing bone cells in vitro in the presence of fluoride. Connect Tissue Res. 2003;44:88–95.Google Scholar
  61. 61.
    Garcia P, Pieruschka A, Klein M, Tami A, Histing T, Holstein JH, Scheuer C, Pohlemann T, Menger MD. Temporal and spatial vascularization patterns of unions and nonunions: role of vascular endothelial growth factor and bone morphogenetic proteins. J Bone Joint Surg Am. 2012;94:49–58.CrossRefGoogle Scholar
  62. 62.
    Kuzyk PR, Schemitsch EH. The basic science of peri-implant bone healing. Indian J Orthop. 2011;45:108–15.CrossRefGoogle Scholar
  63. 63.
    Kan L, Kessler JA. Animal models of typical heterotopic ossification. J Biomed Biotechnol. 2011;2011:1–8.CrossRefGoogle Scholar
  64. 64.
    Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–8.CrossRefGoogle Scholar
  65. 65.
    O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–41.CrossRefGoogle Scholar
  66. 66.
    Ullmann B, Reifenrath J, Dziuba D, Seitz J, Bormann D, Meyer-Lindenberg A. In vivo degradation behaviour of the magnesium alloy LANd442 in rabbit tibiae. Materials. 2011;4:2197–218.CrossRefGoogle Scholar
  67. 67.
    Witte F, Ulrich H, Rudert M, Willbold E. Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response. J Biomed Mater Res A. 2007;81:748–56.Google Scholar
  68. 68.
    Kim H, Lee S, Bae C, Noh Y, Kim H, Kim H, Ko JS. Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials. 2003;24:3277–84.CrossRefGoogle Scholar
  69. 69.
    Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 2012;8:20–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mareike Lalk
    • 1
    Email author
  • Janin Reifenrath
    • 1
  • Nina Angrisani
    • 1
  • Alexandr Bondarenko
    • 2
  • Jan-Marten Seitz
    • 3
  • Peter P. Mueller
    • 4
  • Andrea Meyer-Lindenberg
    • 5
  1. 1.Small Animal ClinicUniversity of Veterinary Medicine HannoverHannoverGermany
  2. 2.Department of PathologyDnipropetrovs’k State Medical AcademyDnipropetrovs’kUkraine
  3. 3.Institute of Materials ScienceLeibniz Universität HannoverGarbsenGermany
  4. 4.Department of Gene Regulation and DifferentiationHelmholtz Centre for Infection ResearchBraunschweigGermany
  5. 5.Clinic for Small Animal Surgery and Reproduction, Centre of Clinical Veterinary Medicine, Faculty of Veterinary MedicineLudwig Maximilian University MunichMunichGermany

Personalised recommendations