Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials

  • R. Costa
  • C. Ribeiro
  • A. C. Lopes
  • P. Martins
  • V. Sencadas
  • R. Soares
  • S. Lanceros-Mendez
Article

Abstract

Electroactive materials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidene fluoride), PVDF, have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.

References

  1. 1.
    Jagur-Grodzinski J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym Adv Technol. 2006;17(6):395–418. doi:10.1002/pat.729.CrossRefGoogle Scholar
  2. 2.
    Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH. Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym Adv Technol. 2005;16(2–3):276–82. doi:10.1002/pat.568.CrossRefGoogle Scholar
  3. 3.
    Weber N, Lee YS, Shanmugasundaram S, Jaffe M, Arinzeh TL. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 2010;6(9):3550–6. doi:10.1016/j.actbio.2010.03.035.CrossRefGoogle Scholar
  4. 4.
    Lovinger AJ. Developments in crystalline polymers. London: Elsevier Applied Science; 1982.Google Scholar
  5. 5.
    Nalwa HS. Ferroelectric polymers: chemistry, physics and applications. New York: Marcel Dekker, Inc.; 1995.Google Scholar
  6. 6.
    Ribeiro C, Panadero JA, Sencadas V, Lanceros-Méndez S, Tamaño MN, Moratal D, et al. Fibronectin adsorption and cell response on electro active poly(vinylidene fluoride) films. Biomed Mater. 2012;7(3):035004.CrossRefGoogle Scholar
  7. 7.
    Rodrigues MT, Gomes ME, Mano JF, Reis RL. beta-PVDF membranes induce cellular proliferation and differentiation in static and dynamic conditions. In: Marques AT, Silva AF, Baptista APM, Sa C, Alves F, Malheiros LF, et al., editors. Advanced Materials Forum Iv. Materials Science Forum. Stafa-Zurich: Trans Tech; 2008. p. 72–6.Google Scholar
  8. 8.
    Low YKA, Meenubharathi N, Niphadkar ND, Boey FYC, Ng KW. alpha- and beta-Poly(Vinylidene Fluoride) evoke different cellular behaviors. J Biomater Sci Polym Ed. 2011;22(12):1651–67. doi:10.1163/092050610x519471.CrossRefGoogle Scholar
  9. 9.
    Martins P, Lasheras A, Gutierrez J, Barandiaran JM, Orue I, Lanceros-Mendez S. Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites. J Phys D: Appl Phys. 2011;44(49): – . doi:10.1088/0022-3727/44/49/495303.CrossRefGoogle Scholar
  10. 10.
    Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1–2):83–96. doi:10.1016/j.cis.2008.09.002.CrossRefGoogle Scholar
  11. 11.
    Lopes AC, Silva MP, Goncalves R, Pereira MFR, Botelho G, Fonseca AM, et al. Enhancement of the dielectric constant and thermal properties of alpha-poly(vinylidene fluoride)/zeolite nanocomposites. J Phys Chem C. 2010;114(34):14446–52. doi:10.1021/jp1052997.CrossRefGoogle Scholar
  12. 12.
    Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Mendez S. Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci. 2012;47(3):1378–88. doi:10.1007/s10853-011-5916-7.CrossRefGoogle Scholar
  13. 13.
    Simoes R, Silva J, Vaia R, Sencadas V, Costa P, Gomes J, et al. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments. Nanotechnology. 2009;20(3):035703.CrossRefGoogle Scholar
  14. 14.
    Tripathi G, Choudhury P, Basu B. Development of polymer based biocomposites: a review. Mater Technol. 2010;25(3–4):158–76. doi:10.1179/175355510x12723642365089.Google Scholar
  15. 15.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61(9):1189–224. doi:10.1016/s0266-3538(00)00241-4.CrossRefGoogle Scholar
  16. 16.
    Cai ZJ, Hou CW, Yang G. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohyd Polym. 2012;87(2):1073–80. doi:10.1016/j.carbpol.2011.08.037.CrossRefGoogle Scholar
  17. 17.
    Chuang WY, Young TH, Yao CH, Chiu WY. Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials. 1999;20(16):1479–87. doi:10.1016/s0142-9612(99)00054-x.CrossRefGoogle Scholar
  18. 18.
    Rizzi SC, Heath DT, Coombes AGA, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res. 2001;55(4):475–86. doi:10.1002/1097-4636(20010615).CrossRefGoogle Scholar
  19. 19.
    Guan GP, Bai L, Zuo BQ, Li MZ, Wu ZY, Li YL. Scaffolds decorated by in vivo environment improve cell proliferation and wound healing. New York: IEEE; 2009. 1-4.Google Scholar
  20. 20.
    Rickert D, Moses MA, Lendlein A, Kelch S, Franke RP. The importance of angiogenesis in the interaction between polymeric biomaterials and surrounding tissue. Clin Hemorheol Microcirc. 2003;28(3):175–81.Google Scholar
  21. 21.
    Ghanaati S, Unger RE, Webber MJ, Barbeck M, Orth C, Kirkpatrick JA, et al. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials. 2011;32(32):8150–60. doi:10.1016/j.biomaterials.2011.07.041.CrossRefGoogle Scholar
  22. 22.
    Oates M, Chen R, Duncan M, Hunt JA. The angiogenic potential of three-dimensional open porous synthetic matrix materials. Biomaterials. 2007;28(25):3679–86. doi:10.1016/j.biomaterials.2007.04.042.CrossRefGoogle Scholar
  23. 23.
    Branciforti MC, Sencadas V, Lanceros-Mendez S, Gregorio R. New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the beta phase. J Polym Sci Part B: Polym Phys. 2007;45(19):2793–801.CrossRefGoogle Scholar
  24. 24.
    Sencadas V, Gregorio R, Lanceros-Mendez S. alpha to beta Phase transformation and microstructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Part B: Phys. 2009;48(3):514–25. doi:10.1080/00222340902837527.CrossRefGoogle Scholar
  25. 25.
    Gomes J, Nunes JS, Sencadas V, Lanceros-Mendez S. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct. 2010;19(6):065010.CrossRefGoogle Scholar
  26. 26.
    Firmino Mendes S, Costa C, Sencadas V, Serrado Nunes J, Costa P, Gregorio R, et al. Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Appl Phys A: Mater. 2009;96(4):899–908. doi:10.1007/s00339-009-5141-2.CrossRefGoogle Scholar
  27. 27.
    Costa P, Silva J, Sencadas V, Costa CM, van Hattum FWJ, Rocha JG, et al. The effect of fibre concentration on the alpha to beta-phase transformation, degree of crystallinity and electrical properties of vapor grown carbon nanofibre/poly(vinylidene fluoride) composites. Carbon. 2009;47(11):2590–9. doi:10.1016/j.carbon.2009.05.011.CrossRefGoogle Scholar
  28. 28.
    Miranda D, Sencadas V, Sanchez-Iglesias A, Pastoriza-Santos I, Liz-Marzan LM, Ribelles JLG, et al. Influence of silver nanoparticles concentration on the alpha- to beta-phase transformation and the physical properties of silver nanoparticles doped poly(vinylidene fluoride) nanocomposites. J Nanosci Nanotechnol. 2009;9(5):2910–6. doi:10.1166/jnn.2009.208.CrossRefGoogle Scholar
  29. 29.
    Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Mendez S. Nucleation of the electro active gamma phase and enhancement of the optical transparency in low filler content poly(vinylidene)/clay nanocomposites. J Phys Chem C. 2011;115(37):18076–82. doi:10.1021/jp204513w.CrossRefGoogle Scholar
  30. 30.
    Miranda CL, Stevens JF, Helmrich A, Henderson MC, Rodriguez RJ, Yang YH, et al. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol. 1999;37(4):271–85. doi:10.1016/s0278-6915(99)00019-8.CrossRefGoogle Scholar
  31. 31.
    Soares R, Balogh G, Guo S, Gartner F, Russo J, Schmitt F. Evidence for the Notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol. 2004;18(9):2333–43. doi:10.1210/me.2003-0362.CrossRefGoogle Scholar
  32. 32.
    Shastri VR, Rahman N, Martin I, Robert S Langer Jr. Electro active materials for stimulation of biological activity of bone marrow stromal cells. US Patent 6,190,893. 20 Feb 2001.Google Scholar
  33. 33.
    Kim GH. Electro active polymer composites as a tactile sensor for biomedical applications. Macromol Res. 2004;12(6):564–72.CrossRefGoogle Scholar
  34. 34.
    Williamson MR, Black R, Kielty C. PCL–PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials. 2006;27(19):3608–16.Google Scholar
  35. 35.
    Nablo BJ, Schoenfisch MH. In vitro cytotoxicity of nitric oxide-releasing sol–gel derived materials. Biomaterials. 2005;26(21):4405–15.CrossRefGoogle Scholar
  36. 36.
    Burny F, Donkerwolcke M, Moulart F, Bourgois R, Puers R, van Schuylenbergh K, et al. Concept, design and fabrication of smart orthopedic implants. Med Eng Phys. 2000;22(7):469–79. doi:10.1016/S1350-4533(00)00062-X.CrossRefGoogle Scholar
  37. 37.
    Parvizi J, Antoci V Jr, Hickok NJ, Shapiro IM. Selfprotective smart orthopedic implants. Expert Rev Med Devices. 2007;4(1):55–64. doi:10.1586/17434440.4.1.55.CrossRefGoogle Scholar
  38. 38.
    Lin HY, Lin YJ. In vitro effects of low frequency electromagnetic fields on osteoblast proliferation and maturation in an inflammatory environment. Bioelectromagnetics. 2011;32(7):552–60. doi:10.1002/bem.20668.CrossRefGoogle Scholar
  39. 39.
    Serrano MC, Pagani R, Vallet-Regi M, Pena J, Comas JV, Portoles MT. Nitric oxide production by endothelial cells derived from blood progenitors cultured on NaOH-treated polycaprolactone films: A biofunctionality study. Acta Biomater. 2009;5(6):2045–53. doi:10.1016/j.actbio.2009.02.034.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • R. Costa
    • 1
  • C. Ribeiro
    • 2
    • 4
  • A. C. Lopes
    • 2
  • P. Martins
    • 2
    • 4
  • V. Sencadas
    • 2
    • 3
    • 4
  • R. Soares
    • 1
  • S. Lanceros-Mendez
    • 2
    • 4
  1. 1.Department of Biochemistry (U38-FCT), Faculty of MedicineUniversity of PortoPortoPortugal
  2. 2.Centro/Departamento de FísicaUniversidade do Minho, Campus de GualtarBragaPortugal
  3. 3.Escola Superior de TecnologiaInstituto Politécnico do Cávado e do Ave, Campus do IPCABarcelosPortugal
  4. 4.INL—International Iberian Nanotechnology LaboratoryBragaPortugal

Personalised recommendations