Journal of Materials Science: Materials in Medicine

, Volume 24, Issue 2, pp 523–532

Aspirin-loaded electrospun poly(ε-caprolactone) tubular scaffolds: potential small-diameter vascular grafts for thrombosis prevention

  • Costantino Del Gaudio
  • Enrico Ercolani
  • Pierluca Galloni
  • Federico Santilli
  • Silvia Baiguera
  • Leonardo Polizzi
  • Alessandra Bianco
Article

Abstract

Thrombosis is the main cause of failure of small-diameter synthetic vascular grafts when used for by-pass procedures. The development of bioresorbable vascular scaffolds with localized and sustained intra-luminal antithrombotic drug release could be considered a desirable improvement towards a valuable solution for this relevant clinical need. For this aim, we present the fabrication and characterization of aspirin-loaded electrospun poly(ε-caprolactone) tubular scaffolds as a vascular drug-delivery graft. Three different drug concentrations were considered (i.e., 1, 5 or 10 % w/w). Although a fibrous structure was clearly observed for all the collected scaffolds, aspirin content was directly implied in the final microstructure leading to a bimodal fiber diameter distribution and fused fibers at crossing-points (5 or 10 % w/w). Mechanical response highlighted a direct relationship for modulus and stress at break with the aspirin content, while the elongation at break was not remarkably different for the investigated cases. The temporal drug release was strongly dependent from the amount of loaded aspirin, reaching a steady state release after about 50 h. Finally, the adhesion assay confirmed the capability of the electrospun scaffolds to reduce platelet adhesion/aggregation onto aspirin loaded polymeric fibers. Aspirin-loaded electrospun tubular scaffold could represent a feasible candidate to develop a novel bioresorbable drug-releasing graft for small-diameter vessel replacements.

References

  1. 1.
    European cardiovascular disease statistics. European Heart Network; 2008.Google Scholar
  2. 2.
    Yusuf S, Ounpuu S, Anand S. The global epidemic of atherosclerotic cardiovascular disease. Med Princ Pract. 2002;11(Suppl 2):3–8.CrossRefGoogle Scholar
  3. 3.
    Hashi CK, Derugin N, Janairo RR, Lee R, Schultz D, Lotz J, Li S. Antithrombogenic modification of small-diameter microfibrous vascular grafts. Arterioscler Thromb Vasc Biol. 2010;30:1621–7.CrossRefGoogle Scholar
  4. 4.
    Pektok E, Nottelet B, Tille JC, Gurny R, Kalangos A, Moeller M, Walpoth BH. Degradation and healing characteristics of small-diameter poly(ε-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008;118:2563–70.CrossRefGoogle Scholar
  5. 5.
    Nottelet B, Pektok E, Mandracchia D, Tille JC, Walpoth B, Gurny R, Möller M. Factorial design optimization and in vivo feasibility of poly(ε-caprolactone)-micro- and nanofiber-based small diameter vascular grafts. J Biomed Mater Res A. 2009;89:865–75.Google Scholar
  6. 6.
    Innocente F, Mandracchia D, Pektok E, Nottelet B, Tille JC, de Valence S, Faggian G, Mazzucco A, Kalangos A, Gurny R, Moeller M, Walpoth BH. Paclitaxel-eluting biodegradable synthetic vascular prostheses, a step towards reduction of neointima formation? Circulation. 2009;120(suppl 11):S37–45.CrossRefGoogle Scholar
  7. 7.
    Sarkar S, Sales KM, Hamilton G, Seifalian AM. Addressing thrombogenicity in vascular graft construction. J Biomed Mater Res B. 2007;82:100–8.Google Scholar
  8. 8.
    Jämstorp E, Bodin A, Gatenholm P, Jeppsson A, Strømme M. Release of antithrombotic drugs from alginate gel beads. Curr Drug Deliv. 2010;7:297–302.CrossRefGoogle Scholar
  9. 9.
    Field TS, Benavente OR. Current status of antiplatelet agents to prevent stroke. Curr Neurol Neurosci Rep. 2011;11:6–14.CrossRefGoogle Scholar
  10. 10.
    CAPRIE steering committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet. 1996;348:1329–39.CrossRefGoogle Scholar
  11. 11.
    Badruddin A, Gorelick PB. Antiplatelet therapy for prevention of recurrent stroke. Curr Treat Options Neurol. 2009;11:452–9.CrossRefGoogle Scholar
  12. 12.
    Kral M, Herzig R, Sanak D, Skoloudik D, Vlachova I, Bartkova A, Hlustik P, Kovacik M, Kanovsky P. Oral antiplatelet therapy in stroke prevention. Minireview. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154:203–10.CrossRefGoogle Scholar
  13. 13.
    Guslandi M. Gastric toxicity of antiplatelet therapy with low-dose aspirin. Drugs. 1997;53:1–5.CrossRefGoogle Scholar
  14. 14.
    Sztriha LK, Sas K, Vecsei L. Aspirin resistance in stroke: 2004. J Neurol Sci. 2005;229:163–9.CrossRefGoogle Scholar
  15. 15.
    Hall JD, Rittgers SE, Schmidt SP. Effect of controlled local acetylsalicylic acid release on in vitro platelet adhesion to vascular grafts. J Biomater Appl. 1994;8:361–84.CrossRefGoogle Scholar
  16. 16.
    Guyton AC. Textbook of medical physiology. 7th ed. Philadelphia: W.B. Saunders Co.; 1986.Google Scholar
  17. 17.
    Wulf K, Teske M, Löbler M, Luderer F, Schmitz KP, Sternberg K. Surface functionalization of poly(ε-caprolactone) improves its biocompatibility as scaffold material for bioartificial vessel prostheses. J Biomed Mater Res B. 2011;98:89–100.Google Scholar
  18. 18.
    Allen BT, Sparks RE, Welch MJ, Mason NS, Mathias CJ, Clark RE. Reduction of platelet deposition on vascular grafts using an antiplatelet graft coating technique. J Surg Res. 1984;36:80–8.CrossRefGoogle Scholar
  19. 19.
    Tang Y, Singh J. Controlled delivery of aspirin: effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. Int J Pharm. 2008;357:119–25.CrossRefGoogle Scholar
  20. 20.
    Cortizo MS, Alessandrini JL, Etcheverr SB, Cortizo AM. A vanadium/aspirin complex controlled release using a poly (β-propiolactone) film. Effects on osteosarcoma cells. J Biomater Sci Polym Ed 2001;12:945–59.Google Scholar
  21. 21.
    Yoon H, Kim G. A three-dimensional polycaprolactone scaffold combined with a drug delivery system consisting of electrospun nanofibers. J Pharm Sci. 2011;100:424–30.CrossRefGoogle Scholar
  22. 22.
    Del Gaudio C, Grigioni M, Bianco A, De Angelis G. Electrospun bioresorbable heart valve scaffold for tissue engineering. Int J Artif Organs. 2008;31:68–75.Google Scholar
  23. 23.
    Liu SJ, Chiang FJ, Hsiao CY, Kau YC, Liu KS. Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques. Ann Biomed Eng. 2010;38:3185–94.CrossRefGoogle Scholar
  24. 24.
    Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:217–56.CrossRefGoogle Scholar
  25. 25.
    Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res A. 2007;83:999–1008.Google Scholar
  26. 26.
    McClure MJ, Sell SA, Ayres CE, Simpson DG, Bowlin GL. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix. Biomed Mater. 2009;4:055010.CrossRefGoogle Scholar
  27. 27.
    Bakar SK, Niazi S. Stability of aspirin in different media. J Pharm Sci. 1983;72:1024–6.CrossRefGoogle Scholar
  28. 28.
    Wan LS, Xu ZK. Polymer surfaces structured with random or aligned electrospun nanofibers to promote the adhesion of blood platelets. J Biomed Mater Res A. 2009;89:168–75.Google Scholar
  29. 29.
    Yarin AL, Kataphinan W, Reneker DH. Branching in electrospinning of nanofibers. J Appl Phys. 2005;98:064501.CrossRefGoogle Scholar
  30. 30.
    Gentsch R, Boysen B, Lankenau A, Börner HG. Single-step electrospinning of bimodal fiber meshes for ease of cellular infiltration. Macromol Rapid Commun. 2010;31:59–64.CrossRefGoogle Scholar
  31. 31.
    Li WJ, Cooper JA Jr, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(α-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2:377–85.CrossRefGoogle Scholar
  32. 32.
    Kim JH, Kim SH, Kim HK, Akaike T, Kim SC. Adhesion and growth of endothelial cell on amphiphilic PU/PS IPN surface: effect of amphiphilic balance and immobilized collagen. J Biomed Mater Res A. 2002;62:613–21.CrossRefGoogle Scholar
  33. 33.
    Amornsakchai T, Cansfield DLM, Jawad SA, Pollard G, Ward IM. The relation between filament diameter and fracture strength for ultra-high-modulus polyethylene fibres. J Mater Sci. 1993;28:1689–98.CrossRefGoogle Scholar
  34. 34.
    Del Gaudio C, Fioravanzo L, Folin M, Marchi F, Ercolani E, Bianco A. Electrospun tubular scaffolds: on the effectiveness of blending poly(ε-caprolactone) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Biomed Mater Res B. 2012;100B:1883–98.Google Scholar
  35. 35.
    Stankus JJ, Soletti L, Fujimoto K, Hong Y, Vorp DA, Wagner WR. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials. 2007;28:2738–46.CrossRefGoogle Scholar
  36. 36.
    Donovan DL, Schmidt SP, Townshend SP, Njus GO, Sharp WV. Material and structural characterization of human saphenous vein. J Vasc Surg. 1990;12:531–7.Google Scholar
  37. 37.
    Lam CXF, Savalani MM, Teoh S, Hutmacher DW. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater. 2008;3:1–15.CrossRefGoogle Scholar
  38. 38.
    Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.CrossRefGoogle Scholar
  39. 39.
    Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48:139–57.CrossRefGoogle Scholar
  40. 40.
    Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B. Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev. 2011;63:209–20.CrossRefGoogle Scholar
  41. 41.
    Lao LL, Peppas NA, Boey FY, Venkatraman SS. Modeling of drug release from bulk-degrading polymers. Int J Pharm. 2011; 418:28–41.CrossRefGoogle Scholar
  42. 42.
    Hong Y, Ye SH, Nieponice A, Soletti L, Vorp DA, Wagner WR. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials. 2009;30:2457–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Costantino Del Gaudio
    • 1
  • Enrico Ercolani
    • 1
  • Pierluca Galloni
    • 2
  • Federico Santilli
    • 2
  • Silvia Baiguera
    • 3
  • Leonardo Polizzi
    • 3
  • Alessandra Bianco
    • 1
  1. 1.Department of Industrial EngineeringUniversity of Rome “Tor Vergata”, INSTM Research Unit Roma Tor VergataRomeItaly
  2. 2.Department of Chemical Science and TechnologyUniversity of Rome “Tor Vergata”RomeItaly
  3. 3.BIOAIRLab, European Center of Thoracic Research (CERT)University Hospital CareggiFlorenceItaly

Personalised recommendations