Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones

  • Nenad Ignjatović
  • Zorica Ajduković
  • Vojin Savić
  • Stevo Najman
  • Dragan Mihailović
  • Perica Vasiljević
  • Zoran Stojanović
  • Vuk UskokovićEmail author
  • Dragan Uskoković


Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.


Alveolar Bone Autologous Blood Osteoporotic Bone Haversian Canal Cement Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research presented in this paper was supported by the Ministry of Education and Science of the Republic of Serbia under the Project No. III45004 and by the NIH/NIDCR grant K99-DE021416. Confocal microscopy data for this study were acquired at the Nikon Imaging Center at University of California, San Francisco. FE-SEM images were obtained by courtesy of Dr. Srečo Škapin from Jožef Stefan Institute. Authors would also like to thank MSc. Ljilijana Veselinović for XRD measurements.


  1. 1.
    Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115:3318–25.CrossRefGoogle Scholar
  2. 2.
    Pollähne W, Pfeifer M, Lazarescu A, Minne HW. Osteoporose: bildgebende diagnostik. Medizin im Bild. 1996;3:37–44.Google Scholar
  3. 3.
    Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron. 2005;36(7–8):630–44.CrossRefGoogle Scholar
  4. 4.
    Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021.CrossRefGoogle Scholar
  5. 5.
    Ito A, Honda H, Kobayasji T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother. 2006;55(3):320–8.CrossRefGoogle Scholar
  6. 6.
    Hench LL. Bioceramics. J Am Ceram Soc. 1998;81(7):1705–28.CrossRefGoogle Scholar
  7. 7.
    Le Geros RZ, Craig RG. Strategies to affect bone remodeling: osteointegration. J Bone Miner Res. 1993;8(2):S583–96.Google Scholar
  8. 8.
    Ajdukovic Z, Ignjatovic N, Petrovic D, Uskokovic D. Substitution of osteoporotic alveolar bone by biphasic calcium phosphate/poly –DL-lactide–co-glycolide biomaterials. J Biomater Appl. 2007;21(3):317–28.Google Scholar
  9. 9.
    Ignjatovic N, Uskokovic D. Biodegradable composites based on nano-crystalline calcium phosphate and bioresorbable polymers. Adv Appl Ceram. 2008;107:142–7.CrossRefGoogle Scholar
  10. 10.
    Abdel-Fattah WI, Osiris WG, Mohamed SS, Khalil MR. Reconstruction of resected mandibles using a hydroxyapatite veterinary bone graft. Biomaterials. 1994;15(8):609–14.CrossRefGoogle Scholar
  11. 11.
    Tami AE, Leitner MM, Baucke MG, Mueller TL, van Lenthe GH, Müller R, Ito K. Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone. Bone. 2009;45(6):1117–24.CrossRefGoogle Scholar
  12. 12.
    Verron E, Gauthier O, Janvier P, Pilet P, Lesoeur J, Bujoli B, Guicheux J, Bouler J-M. In vivo bone augmentation in an osteoporotic environment using bisphosphonate-loaded calcium deficient apatite. Biomaterials. 2010;31(30):7776–84.CrossRefGoogle Scholar
  13. 13.
    Ignjatovic N, Ajdukovic Z, Savic V, Uskokovic D. Size effect of calcium phosphate coated with poly-(DL-lactide-co-glycolide) on healing processes in bone reconstruction. J Biomed Mater Res B Appl Biomater. 2010;94B:108–17.Google Scholar
  14. 14.
    Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006;27(14):2798–805.CrossRefGoogle Scholar
  15. 15.
    Uskoković V, Uskoković DP. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater. 2011;96B(1):152–91.CrossRefGoogle Scholar
  16. 16.
    Veselinovic LJ, Karanovic LJ, Stojanovic Z, Bracko I, Markovic S, Ignjatovic N, Uskokovic D. Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing. J Appl Crystallogr. 2010;43:320–7.CrossRefGoogle Scholar
  17. 17.
    Zhang JM, Lin CJ, Feng ZD, Tian ZW. Hydroxyapatite/metal composite coatings prepared by multi-step electrodepozition method. J Mater Sci Lett. 1998;17:1077–9.CrossRefGoogle Scholar
  18. 18.
    El Ouassouli A, Ezzemouri S, Ezzamarty A, Lakhdar M, Leglise J. Catalyseurs sulfures à base de cobalt et d’hydroxyapatite. J Chim Phys. 1999;96(7):1212–25.CrossRefGoogle Scholar
  19. 19.
    Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscin G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007;3(6):961–9.CrossRefGoogle Scholar
  20. 20.
    Meng J, Zhang Y, Qi X, Kong H, Wang C, Xu Z, Xie S, Gu N, Xu H. Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells. Nanoscale. 2010;2:2565–9.CrossRefGoogle Scholar
  21. 21.
    Li Y, Nam CT, Ooi CP. Iron(III) and manganese (II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis. J Phys Conf. Ser. 2009;. doi: 10.1088/1742-6596/187/1/012024.Google Scholar
  22. 22.
    Patel B, Favaro G, Inam F, Reece MJ, Angadji A, Bonfield W, Huang J, Edirisinghe M. Cobalt-based orthopaedic alloys: relationship between forming route, microstructure and tribological performance. Mater Sci Eng C. 2012;. doi: 10.1016/j.msec.2012.03.012.Google Scholar
  23. 23.
    Stojanovic Z, Veselinovic LJ, Markovic S, Ignjatovic N, Uskokovic D. Hydrothermal synthesis of nanosize pure and cobalt-exchanged hydroxyapatite. Mater Manuf Processes. 2009;24:1096–103.CrossRefGoogle Scholar
  24. 24.
    Uskoković V, Lee PP, Walsh L, Fischer KE, Desai TA. Silicon Nanowire coated microparticles as epithelial drug delivery devices. The effect of PEGylation on particle-epithelium interactions. Biomaterials. 2012;33(5):1663–72.CrossRefGoogle Scholar
  25. 25.
    Ajdukovic Z, Najman S, Djordjevic LJ, Savic V, Petrovic D, Ignjatovic N, Uskokovic D. Repair of bone tissue affected by osteoporosis with hydroxyapatite-poly-L-(HAp/PLLA) with and without blood plasma. J Biomater Appl. 2005;20(2):179–90.CrossRefGoogle Scholar
  26. 26.
    Ignjatovic N, Ajdukovic Z, Uskokovic D. New biocomposite calciumphosphate/poly-DL-lactide-co-glycolide/biostimulatite agens filler for reconstruction of bone tissue changed by osteoporosis. J Mater Sci Mater Med. 2005;16:621–6.CrossRefGoogle Scholar
  27. 27.
    Ignjatovic N, Ninkov P, Ajdukovic Z, Vasiljevic-Radovic D, Uskokovic D. Biphasic calcium phosphate coated with poly-D, L-lactide-co-glycolide biomaterial as a bone substitute. J Eur Ceram Soc. 2007;27(2–3):1589–94.CrossRefGoogle Scholar
  28. 28.
    Miao D, Scutt A. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. J Histochem Cytochem. 2002;50(3):333–40.CrossRefGoogle Scholar
  29. 29.
    Britti D, Massimini G, Peli A, Luciani A, Boari A. Evaluation of serum enzyme activities as predictors of passive transfer status in lambs. J Am Vet Med Assoc. 2005;226(6):951–5.CrossRefGoogle Scholar
  30. 30.
    Macleod I, Heath N. Cone-beam computed tomography (CBCT) in dental practice. Dent Update. 2008;35:590–8.Google Scholar
  31. 31.
    Suomalainen A, Kiljunen T, Käser Y, Peltola J, Kortesniemi M. Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol. 2009;38(6):367–78.CrossRefGoogle Scholar
  32. 32.
    Homolka P, Beer A, Birkfellner W, Nowotny R, Gahleitner A, Tschabitscher M, Bergmann H. Bone mineral density measurement with dental quantitative CT prior tu dental implant placement in cadaver mandibles: pilot study. Radipoly. 2002;224(1):247–52.CrossRefGoogle Scholar
  33. 33.
    Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem. 1998;273:29745–53.CrossRefGoogle Scholar
  34. 34.
    Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem. 1999;274:35179–85.CrossRefGoogle Scholar
  35. 35.
    Horev-Azaria L, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, Romano R, Rossi F, Golla-Schindler U, Sommer D, Uboldi C, Unger RE, Villiers C. Predictive toxicology of cobalt nanoparticles and ions: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol Sci. 2011;122(2):489–501.CrossRefGoogle Scholar
  36. 36.
    Yang SJ, Pyen J, Lee I, Lee H, Kim Y, Kim T. Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase 1/2 activation in rat C6 glioma cells. J Biochem Mol Biol. 2004;37(4):480–6.CrossRefGoogle Scholar
  37. 37.
    Gürbay A. Protective effect of zinc chloride against cobalt chloride-induced cytotoxicity on vero cells: preliminary results. Biol Trace Elem Res. 2012;148(1):110–6.CrossRefGoogle Scholar
  38. 38.
    de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos ES Jr, de Sena LÁ, Rossi AM, Granjeiro JM. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A. 2011;98(3):351–8. doi: 10.1002/jbm.a.33126.Google Scholar
  39. 39.
    Lantin AC, Mallants A, Vermeulen J, Speybroeck N, Hoet P, Lison D. Absence of adverse effect on thyroid function and red blood cells in a population of workers exposed to cobalt compounds. Toxicol Lett. 2011;201(1):42–6.CrossRefGoogle Scholar
  40. 40.
    Pelclova D, Sklensky M, Janicek P, Lach K. Severe cobalt intoxication following hip replacement revision: clinical features and outcome. Clin Toxicol. 2012;50(4):262–5.CrossRefGoogle Scholar
  41. 41.
    Hallab NJ, Chan FW, Harper ML, Quantifying subtle but persistent peri-spine inflammation in vivo to submicron cobalt-chromium alloy particles, Eur Spine J, 2012 Mar 10. [Epub ahead of print].Google Scholar
  42. 42.
    Gill HS, Grammatopoulos G, Adshead S, Tsialogiannis E, Tsiridis E. Molecular and immune toxicity of CoCr nanoparticles in MoM hip arthroplasty. Trends Mol Med. 2012;18(3):145–55.CrossRefGoogle Scholar
  43. 43.
    D.B. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. Biomaterials science. An Introduction to Materials in Medicine, 2nd Edition, Elsevier Academic Press San Diego, California, USA 2004:23-40;Google Scholar
  44. 44.
    Seibel JM. Biochemical markers of bone turnover part II: clinical applications in the management of osteoporosis. Clin Biochem Rev. 2006;27(3):123–38.Google Scholar
  45. 45.
    Meunier PJ, Jenvrin C, Munoz F, de la Gueronniere V, Garnero P, Menz M. Consumption of a high calcium mineral water lowers biochemical indices of bone remodeling in postmenopausal women with low calcium intake. Osteoporos Int. 2005;16(10):1203–9.CrossRefGoogle Scholar
  46. 46.
    Hen-Yu L, Alexander WTH, Ching-Yu T, Kuei-Ru C, Rong Z, Ming-Fu W, Wen-Chang C, Shiaw-Min H, Ching-Hua S, Win-Ping D. The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis. Biomaterials. 2011;32:6773–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Nenad Ignjatović
    • 1
  • Zorica Ajduković
    • 2
  • Vojin Savić
    • 3
  • Stevo Najman
    • 3
  • Dragan Mihailović
    • 4
  • Perica Vasiljević
    • 5
  • Zoran Stojanović
    • 1
  • Vuk Uskoković
    • 6
    Email author
  • Dragan Uskoković
    • 1
  1. 1.Institute of Technical Sciences, Serbian Academy of Sciences and ArtsBelgradeSerbia
  2. 2.Department of Prosthodontics, Clinic of StomatologyFaculty of Medicine, University of NišNišSerbia
  3. 3.Institute of Biomedical Research, Faculty of Medicine, University of NišNišSerbia
  4. 4.Institute of Pathology, Faculty of Medicine, University of NišNišSerbia
  5. 5.Department of Biology and EcologyFaculty of Science, University of NišNišSerbia
  6. 6.Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations