Comparison of mesenchymal stem cell proliferation and differentiation between biomimetic and electrochemical coatings on different topographic surfaces

  • Elena García-GaretaEmail author
  • Jia Hua
  • Jonathan C. Knowles
  • Gordon W. Blunn


The hypothesis for this study was that there is no difference in mesenchymal stem cells (MSCs) proliferation and osteogenic differentiation between calcium-phosphate (CaP) coatings with different crystal size deposited on different topographic surfaces of metal discs. Polished (P) and sand-blasted (SB) tantalum and TiAl6V4 discs were CaP coated by three methods—biomimetic (BioM), electrochemical at 20 mA/cm2 and at 6.5 mA/cm2—and cultured with MSCs. At days 4, 7 and 14, cell proliferation—alamarBlue® activity and DNA quantification—and differentiation down the osteogenic lineage—ALP activity normalised per amount of DNA and SEM (morphology)—were analysed. Results showed that MSCs proliferated more when cultured on the nano-sized BioM coatings compared to uncoated and electrochemically coated discs. MSCs also proliferated more on P surfaces than on SB and or electrochemical coatings. All the coatings induced osteogenic differentiation, which was greater on electrochemical coatings and SB discs.


Osteogenic Differentiation Simulated Body Fluid Osteogenic Lineage Control Disc Osteogenic Supplement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Matter P, Burch HB. Clinical experience with titanium implants, especially with the limited contact dynamic compression plate system. Arch Orthop Trauma Surg. 1990;109:311–3.CrossRefGoogle Scholar
  2. 2.
    Grübl A, Chiari C, Gruber M, Kaider A, Gottsauner-Wolf F. Cementless total hip arthroplasty with a tapered, rectangular titanium stem and threaded cup: a minimum ten-year follow-up. J Bone Joint Surg Am. 2002;81-A(3):425–31.Google Scholar
  3. 3.
    Unger AS, Lewis RJ, Gruen T. Evaluation of a porous tantalum uncemented acetabular cup in revision total hip arthroplasty: clinical and radiological results of 60 hips. J Arthroplasty. 2005;20(8):1002–9.CrossRefGoogle Scholar
  4. 4.
    Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopaedic surgery. Biomaterials. 2006;27:4671–81.CrossRefGoogle Scholar
  5. 5.
    Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Haarman HJThM. Properties of calcium phosphate ceramics in relation to their in vivo behaviour. J Trauma Inj Infect Crit Care. 2000;48(1):179–86.CrossRefGoogle Scholar
  6. 6.
    Tisdel CL, Goldberg VM, Parr JA, Bensusan JS, Staikoff LS, Stevenson S. The influence of a hydroxyapatite and tricalcium-phosphate coating on bone growth into titanium fiber-metal implants. J Bone Joint Surg Am. 1994;76-A(2):159–71.Google Scholar
  7. 7.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:721–34.CrossRefGoogle Scholar
  8. 8.
    Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1998;46(7):2519–27.CrossRefGoogle Scholar
  9. 9.
    Habibovic P, Barrère F, van Blitterswijk CA, de Groot K, Layrolle P. Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc. 2002;85(3):517–22.CrossRefGoogle Scholar
  10. 10.
    Tas AC, Bhaduri SB. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. J Mater Res. 2004;19(9):2742–9.CrossRefGoogle Scholar
  11. 11.
    Bharati S, Sinha MK, Basu D. Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. Bull Mater Sci. 2005;28(6):617–21.CrossRefGoogle Scholar
  12. 12.
    Redepenning J, Schlessinger T, Burnham S, Lippiello L, Miyano J. Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopaedic alloys. J Biomed Mater Res. 1996;30:287–94.CrossRefGoogle Scholar
  13. 13.
    Kashima DP, Rakngarm A. Calcium phosphate film coating on titanium substrate by electrochemical deposition. J Met Mater Miner. 2008;18(1):27–31.Google Scholar
  14. 14.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefGoogle Scholar
  15. 15.
    Ohgushi H, Dohi Y, Tamai S, Tabata S. Osteogenic differentiation of marrow stromal stem cells in porous hydroxyapatite ceramics. J Biomed Mater Res. 1993;27:1401–7.CrossRefGoogle Scholar
  16. 16.
    Oreffo ROC, Driessens FCM, Planell JA, Triffitt JT. Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements. Biomaterials. 1998;19:1845–54.CrossRefGoogle Scholar
  17. 17.
    Nishio K, Neo M, Akiyama H, Nishiguchi S, Kim HM, Kokubo T, Nakamura T. The effect of alkali-and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells. J Biomed Mater Res. 2000;52(4):652–61.CrossRefGoogle Scholar
  18. 18.
    Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 2000;49(2):155–66.CrossRefGoogle Scholar
  19. 19.
    Weiβenböck M, Stein E, Undt G, Ewers R, Lauer G, Turhani D. Particle size of hydroxyapatite granules calcified from red algae affects the osteogenic potential of human mesenchymal stem cells in vitro. Cells Tissues Organs. 2006;182:79–88.CrossRefGoogle Scholar
  20. 20.
    Chen F, Lam WM, Lin CJ, Qiu GX, Wu ZH, Luk KDK, Lu WW. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J Biomed Mater Res. 2007;82B:183–91.CrossRefGoogle Scholar
  21. 21.
    Kokubo T, Kim HM, Kawashita M, Nakamura T. Process of calcification on artificial materials. Z Kardiol. 2001;90(3):86–91.Google Scholar
  22. 22.
    Li J, Liao H, Sjöström M. Characterization of calcium phosphates precipitated from simulated body fluid of different buffering capacities. Biomaterials. 1997;18:743–7.CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Chen J, Feng J, Cao Y, Deng C, Zhang X. Dissolution and mineralisation behaviours of HA coatings. Biomaterials. 2003;24:4741–8.CrossRefGoogle Scholar
  24. 24.
    Wopenka B, Pasteris JD. A mineralogical perspective on the apatite in bone. Mater Sci Eng. 2005;C25:131–43.Google Scholar
  25. 25.
    LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.CrossRefGoogle Scholar
  26. 26.
    Hara M, Murakami T, Kobayashi E. In vivo bioimaging using photogenic rats: fate of injected bone marrow-derived mesenchymal stromal cells. J Autoimmunity. 2008;30:163–71.CrossRefGoogle Scholar
  27. 27.
    Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235–42.CrossRefGoogle Scholar
  28. 28.
    Vrouwenvelder WCA, Groot CG, de Groot K. Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy and stainless steel. J Biomed Mater Res. 1993;27:465–75.CrossRefGoogle Scholar
  29. 29.
    Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64:295–312.CrossRefGoogle Scholar
  30. 30.
    Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal and the osteogenic potential of purified human mesenchynal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64:278–94.CrossRefGoogle Scholar
  31. 31.
    Lian JB, Stein GS. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med. 1992;3(3):269–305.Google Scholar
  32. 32.
    Ergun C, Liu H, Halloran JW, Webster TJ. Increased osteoblasts adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate. J Biomed Mater Res. 2007;80A:990–7.CrossRefGoogle Scholar
  33. 33.
    Ohgushi H, Dohi Y, Yoshikawa T, Tamai S, Tabata S, Okunaga K, Shibuya T. Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics. J Biomed Mater Res. 1996;32:341–8.CrossRefGoogle Scholar
  34. 34.
    Jäger M, Urselmann F, Witte F, Zanger K, Li X, Ayers DC, Krauspe R. Osteoblast differentiation onto different biometals with an endoprosthetic surface topography in vitro. J Biomed Mater Res. 2008;86A:61–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Elena García-Gareta
    • 1
    Email author
  • Jia Hua
    • 1
  • Jonathan C. Knowles
    • 2
  • Gordon W. Blunn
    • 1
  1. 1.John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic HospitalStanmoreUK
  2. 2.Eastman Dental InstituteUniversity College LondonLondonUK

Personalised recommendations