Laser induced surface structuring and ion conversion in the surface oxide of titanium: possible implications for the wetability of laser treated implants

  • Johan Forsgren
  • María Dolores Paz
  • Betty León
  • Håkan EngqvistEmail author


In the present study, commercially pure titanium was irradiated with UV-light with varying wavelengths using a Q-switched Nd:YAG-laser. This was performed in order to investigate if a laser treatment can be employed to rapidly introduce hydrophilic properties to titanium surfaces, which is believed to facilitate protein adsorption and cell attachment. It was demonstrated that irradiation with 355 nm light (10 Hz, 90 mJ/shot) for 1 min or more caused an ion conversion of Ti4+ to Ti3+ sites in the surface oxide which lead to an increase in hydrophilicity of the surface. Furthermore, shorter irradiation times at 355 nm caused a surface structuring that gave rise to an unexpected and unstable hydrophobic state at the surface. Irradiation with 266 nm light (10 Hz, 40 mJ/shot) did not introduce any ion conversion in the surface oxide, nor did it give rise to any hydrophobicity of the surface.


Contact Angle Surface Oxide Laser Treatment Hydrophilic Surface Hydrophilic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, et al. Light-induced amphiphilic surfaces. Nature. 1997;388:431–2.CrossRefGoogle Scholar
  2. 2.
    Guillemot F, Porte MC, Labrugere C, Baquey C. Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications. J Colloid Interface Sci. 2002;255:75–8.CrossRefGoogle Scholar
  3. 3.
    Shultz AN, Jang W, Hetherington WM, Baer DR, Wang LQ, Engelhard MH. Comparative 2nd-harmonic generation and X-ray photoelectron-spectroscopy studies of the UV creation and O2 healing of Ti3+ Defects on (110)rutile Tio2 surfaces. Surf Sci. 1995;339:114–24.CrossRefGoogle Scholar
  4. 4.
    Hugenschmidt MB, Gamble L, Campbell CT. The Interaction of H2o with a Tio2(110) surface. Surf Sci. 1994;302:329–40.CrossRefGoogle Scholar
  5. 5.
    Henderson MA. An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption. Surf Sci. 1996;355:151–66.CrossRefGoogle Scholar
  6. 6.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, et al. Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater. 1998;10:135–8.CrossRefGoogle Scholar
  7. 7.
    Schwarz F, Wieland M, Schwartz Z, Zhao G, Rupp F, Geis-Gerstorfer J, et al. Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B. 2009;88B:544–57.CrossRefGoogle Scholar
  8. 8.
    Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, et al. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials. 2009;30:1015–25.CrossRefGoogle Scholar
  9. 9.
    Liu XY, Zhao XB, Li B, Cao C, Dong YQ, Ding CX, et al. UV-irradiation-induced bioactivity on TiO2 coatings with nanostructural surface. Acta Biomater. 2008;4:544–52.CrossRefGoogle Scholar
  10. 10.
    Hirao M, Sugamoto K, Tamai N, Oka K, Yoshikawa H, Mori Y, et al. Macro-structural effect of metal surfaces treated using computer-assisted yttrium–aluminum-garnet laser scanning on bone-implant fixation. J Biomed Mater Res. 2005;73A:213–22.CrossRefGoogle Scholar
  11. 11.
    Muller M, Hennig FF, Hothorn T, Stangl R. Bone-implant interface shear modulus and ultimate stress in a transcortical rabbit model of open-pore Ti6Al4 V implants. J Biomech. 2006;39:2123–32.CrossRefGoogle Scholar
  12. 12.
    Gaggl A, Schultes G, Muller WD, Karcher H. Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials. 2000;21:1067–73.CrossRefGoogle Scholar
  13. 13.
    Palmquist A, Lindberg F, Emanuelsson L, Branemark R, Engqvist H, Thomsen P. Biomechanical, histological, and ultrastructural analyses of laser micro- and nano-structured titanium alloy implants: a study in rabbit. J Biomed Mater Res. 2010;92A:1476–86.Google Scholar
  14. 14.
    Paz MD, Iñaki Álava J, Goikoetxea L, Chiussi S, Díaz-Güemes I, Usón J, et al. Biological response of laser macrostructured and oxidized titanium alloy: an in vitro and in vivo study. J Appl Biomater Biomech. 2011;9:214–22.Google Scholar
  15. 15.
    Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CDW, Riehle MO. Air-trapping on biocompatible nanopatterns. Langmuir. 2006;22:11230–3.CrossRefGoogle Scholar
  16. 16.
    Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–50.CrossRefGoogle Scholar
  17. 17.
    Cui XS, Li W. On the possibility of superhydrophobic behavior for hydrophilic materials. J Colloid Interface Sci. 2010;347:156–62.CrossRefGoogle Scholar
  18. 18.
    Palik ED. Handbook of optical constants of solids. Waltham: Academic Press; 1985.Google Scholar
  19. 19.
    He J, Zhou W, Zhou XJ, Zhong XX, Zhang XL, Wan PB, et al. The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci Mater Med. 2008;19:3465–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Johan Forsgren
    • 1
  • María Dolores Paz
    • 2
  • Betty León
    • 2
  • Håkan Engqvist
    • 1
    Email author
  1. 1.Department of Engineering SciencesUppsala UniversityUppsalaSweden
  2. 2.Department of Applied PhysicsUniversity of VigoVigoSpain

Personalised recommendations