Advertisement

Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications

  • Nicole J. Ostrowski
  • Boeun Lee
  • Abhijit Roy
  • Madhumati Ramanathan
  • Prashant N. Kumta
Article

Abstract

Polymeric film coatings were applied by dip coating on two magnesium alloy systems, AZ31 and Mg4Y, in an attempt to slow the degradation of these alloys under in vitro conditions. Poly(lactic-co-glycolic acid) polymer in solution was explored at various concentrations, yielding coatings of varying thicknesses on the alloy substrates. Electrochemical corrosion studies indicate that the coatings initially provide some corrosion protection. Degradation studies showed reduced degradation over 3 days, but beyond this time point however, do not maintain a reduction in corrosion rate. Scanning electron microscopy indicates inhomogeneous coating durability, with gas pocket formation in the polymer coating, resulting in eventual detachment from the alloy surface. In vitro studies of cell viability utilizing mouse osteoblast cells showed improved biocompatibility of polymer coated substrates over the bare AZ31 and Mg4Y substrates. Results demonstrate that while challenges remain for long term degradation control, the developed polymeric coatings nevertheless provide short term corrosion protection and improved biocompatibility of magnesium alloys for possible use in orthopedic applications.

Keywords

Corrosion Protection AZ31 Alloy Alloy Substrate Magnesium Hydroxide PLGA Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the support of National Science Foundation, NSF (Grant # CBET-0933153) and the Engineering Research Center funded by the National Science Foundation, NSF-ERC (Grant # EEC-0812348). The authors also acknowledge the financial support of the Center for Complex Engineered Multifunctional Materials (CCEMM), University of Pittsburgh for support of equipment, supplies and reagents used in this research. PNK also acknowledges the support of the Edward R. Weidlein Chair Professorship funds for partial support of miscellaneous research related expenditures. Additionally, the authors would like to thank the Department of Mechanical Engineering and Materials Science for the provision of access to the electron microscopy instrumentation and for assistance with the execution of this part of our research.

References

  1. 1.
    Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34. doi: 10.1016/j.biomaterials.2005.10.003.CrossRefGoogle Scholar
  2. 2.
    Zeng R, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater. 2008;10(8):B3–14. doi: 10.1002/adem.200800035.CrossRefGoogle Scholar
  3. 3.
    Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–92. doi: 10.1016/j.actbio.2010.02.028.CrossRefGoogle Scholar
  4. 4.
    Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12(5–6):63–72. doi: 10.1016/j.cossms.2009.04.001.CrossRefGoogle Scholar
  5. 5.
    Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 2011;7(4):1452–9. doi: 10.1016/j.actbio.2010.12.004.CrossRefGoogle Scholar
  6. 6.
    Wang Y, Wei M, Gao JC. Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating. Mater Sci Eng C Biomimetic Supramol Syst. 2009;29(4):1311–6. doi: 10.1016/j.msec.2008.09.051.CrossRefGoogle Scholar
  7. 7.
    Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013–8. doi: 10.1016/j.biomaterials.2005.07.037.CrossRefGoogle Scholar
  8. 8.
    Zberg B, Uggowitzer PJ, Loeffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater. 2009;8(11):887–91. doi: 10.1038/nmat2542.CrossRefGoogle Scholar
  9. 9.
    Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 2012;8(3):925–36. doi: 10.1016/j.actbio.2011.11.014.CrossRefGoogle Scholar
  10. 10.
    de Jonge LT, Leeuwenburgh SCG, Wolke JGC, Jansen JA. Organic-inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25(10):2357–69. doi: 10.1007/s11095-008-9617-0.CrossRefGoogle Scholar
  11. 11.
    Roy A, Singh SS, Datta MK, Lee B, Ohodnicki J, Kumta PN. Novel sol-gel derived calcium phosphate coatings on Mg4Y alloy. Mater Sci Eng B Adv Funct Solid State Mater. 2011;176(20):1679–89. doi: 10.1016/j.mseb.2011.08.007.Google Scholar
  12. 12.
    Kannan MB. Enhancing the performance of calcium phosphate coating on a magnesium alloy for bioimplant applications. Mater Lett. 2012;76:109–12. doi: 10.1016/j.matlet.2012.02.050.CrossRefGoogle Scholar
  13. 13.
    Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 2010;31(8):2084–96. doi: 10.1016/j.biomaterials.2009.11.111.CrossRefGoogle Scholar
  14. 14.
    Chen Y, Song Y, Zhang S, Li J, Zhao C, Zhang X. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation. Biomed Mater. 2011;6(2):025005. doi: 10.1088/1748-6041/6/2/025005.CrossRefGoogle Scholar
  15. 15.
    Guo M, Cao L, Lu P, Liu Y, Xu X. Anticorrosion and cytocompatibility behavior of MAO/PLLA modified magnesium alloy WE42. J Mater Sci Mater Med. 2011;22(7):1735–40. doi: 10.1007/s10856-011-4354-z.CrossRefGoogle Scholar
  16. 16.
    Langer R. Drug delivery and targeting. Nature. 1998;392(6679):5–10.Google Scholar
  17. 17.
    Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475–90. doi: 10.1016/s0142-9612(00)00115-0.CrossRefGoogle Scholar
  18. 18.
    Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials. 1995;16(15):1123–30. doi: 10.1016/0142-9612(95)93575-x.CrossRefGoogle Scholar
  19. 19.
    Valimaa T, Laaksovirta S. Degradation behaviour of self-reinforced 80L/20G PLGA devices in vitro. Biomaterials. 2004;25(7–8):1225–32. doi: 10.1016/j.biomaterials.2003.08.072.CrossRefGoogle Scholar
  20. 20.
    Drynda A, Deinet N, Braun N, Peuster M. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. J Biomed Mater Res A. 2009;91A(2):360–9. doi: 10.1002/jbm.a.32235.CrossRefGoogle Scholar
  21. 21.
    Kim K, Luu YK, Chang C, Fang DF, Hsiao BS, Chu B, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Controlled Release. 2004;98(1):47–56. doi: 10.1016/j.jconrel.2004.04.009.CrossRefGoogle Scholar
  22. 22.
    Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(l-lactic-co-glycolic acid) scaffold. Biomaterials. 2007;28(17):2763–71. doi: 10.1016/j.biomaterials.2007.02.023.CrossRefGoogle Scholar
  23. 23.
    Li JN, Cao P, Zhang XN, Zhang SX, He YH. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. J Mater Sci. 2010;45(22):6038–45. doi: 10.1007/s10853-010-4688-9.CrossRefGoogle Scholar
  24. 24.
    Xu X, Lu P, Guo M, Fang M. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release. Appl Surf Sci. 2010;256(8):2367–71. doi: 10.1016/j.apsusc.2009.10.069.CrossRefGoogle Scholar
  25. 25.
    Lu P, Fan H, Liu Y, Cao L, Wu X, Xu X. Controllable biodegradability, drug release behavior and hemocompatibility of PTX-eluting magnesium stents. Colloids Surf B. 2011;83(1):23–8. doi: 10.1016/j.colsurfb.2010.10.038.CrossRefGoogle Scholar
  26. 26.
    Paragkumar NT, Edith D, Six J-L. Surface characteristics of PLA and PLGA films. Appl Surf Sci. 2006;253(5):2758–64. doi: 10.1016/j.apsusc.2006.05.047.CrossRefGoogle Scholar
  27. 27.
    Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys: a review. Acta Biomater. 2012;. doi: 10.1016/j.actbio.2012.04.012.Google Scholar
  28. 28.
    von Burkersroda F, Schedl L, Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23(21):4221–31.CrossRefGoogle Scholar
  29. 29.
    Liu S-T, Nancollas GH. The crystallization of magnesium hydroxide. Desalination. 1973;12:75–84.CrossRefGoogle Scholar
  30. 30.
    Manzurola E, Apelblat A. Solubilities of l-glutamic acid, 3-nitrobenzoic acid, p-toluic acid, calcium-l-lactate, calcium gluconate, magnesium-dl-aspartate, and magnesium-l-lactate in water. J Chem Thermodyn. 2002;34(7):1127–36. doi: 10.1006/jcht.2002.0975.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Nicole J. Ostrowski
    • 1
    • 6
  • Boeun Lee
    • 1
    • 6
  • Abhijit Roy
    • 1
    • 6
  • Madhumati Ramanathan
    • 1
    • 6
  • Prashant N. Kumta
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghUSA
  3. 3.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA
  4. 4.Center for Craniofacial RegenerationUniversity of PittsburghPittsburghUSA
  5. 5.Center for Complex Engineered Multifunctional Materials (CCEMM)University of PittsburghPittsburghUSA
  6. 6.Swanson School of Engineering and School of Dental MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations